scholarly journals A Genetic Suppressor of Two Dominant Temperature-Sensitive Lethal Proteasome Mutants of Drosophila melanogaster Is Itself a Mutated Proteasome Subunit Gene

Genetics ◽  
2006 ◽  
Vol 173 (3) ◽  
pp. 1377-1387 ◽  
Author(s):  
Peter J. Neuburger ◽  
Kenneth J. Saville ◽  
Jue Zeng ◽  
Kerrie-Ann Smyth ◽  
John M. Belote
Genetics ◽  
1990 ◽  
Vol 125 (4) ◽  
pp. 783-793
Author(s):  
J M Belote ◽  
F M Hoffmann ◽  
M McKeown ◽  
R L Chorsky ◽  
B S Baker

Abstract The 73AD salivary chromosome region of Drosophila melanogaster was subjected to mutational analysis in order to (1) generate a collection of chromosome breakpoints that would allow a correlation between the genetic, cytological and molecular maps of the region and (2) define the number and gross organization of complementation groups within this interval. Eighteen complementation groups were defined and mapped to the 73A2-73B7 region, which is comprised of 17 polytene bands. These complementation groups include the previously known scarlet (st), transformer (tra) and Dominant temperature-sensitive lethal-5 (DTS-5) genes, as well as 13 new recessive lethal complementation groups and one male and female sterile locus. One of the newly identified lethal complementation groups corresponds to the molecularly identified abl locus, and another gene is defined by mutant alleles that exhibit an interaction with the abl mutants. We also recovered several mutations in the 73C1-D1.2 interval, representing two lethal complementation groups, one new visible mutant, plucked (plk), and a previously known visible, dark body (db). There is no evidence of a complex of sex determination genes in the region near tra.


Genetics ◽  
1999 ◽  
Vol 151 (1) ◽  
pp. 211-220 ◽  
Author(s):  
Kerrie A Smyth ◽  
John M Belote

Abstract Proteasomes are multicatalytic complexes that function as the major proteolytic machinery in regulated protein degradation. The eukaryotic 20S proteasome proteolytic core structure comprises 14 different subunits: 7 α-type and 7 β-type. DTS7 is a dominant temperature-sensitive (DTS) lethal mutation at 29° that also acts as a recessive lethal at ambient temperatures. DTS7 maps to cytological position 71AB. Molecular characterization of DTS7 reveals that this is caused by a missense mutation in a β-type subunit gene, β2. A previously characterized DTS mutant, l(3)73Ai1, results from a missense mutation in another β-type subunit gene, β6. These two mutants share a very similar phenotype, show a strong allele-specific genetic interaction, and are rescued by the same extragenic suppressor, Su(DTS)-1. We propose that these mutants might act as “poison subunits,” disrupting proteasome function in a dosage-dependent manner, and suggest how they may interact on the basis of the structure of the yeast 20S proteasome.


Genetics ◽  
1973 ◽  
Vol 74 (4) ◽  
pp. 619-631
Author(s):  
D L Hartl

ABSTRACT The recovery of the SD chromosome from a heterozygous SD male increases with brood. This is independent of the age of the female, occurs during the time the sperm are stored in the females, disappears when the segregation distortion is suppressed, and is temperature-sensitive-temperature shocks above or below 25°C applied to the mature sperm both tend to accelerate the increase in the recovery of SD. All this suggests the existence of a class of sperm affected by SD in which the sperm are able to fertilize eggs for a short time following ejaculation but become dysfunctional thereafter.


1995 ◽  
Vol 41 (1) ◽  
pp. 44-46 ◽  
Author(s):  
David Shalhevet ◽  
Yang Da ◽  
Jonathan E. Beever ◽  
Michiel J. T. van Eijk ◽  
Runlin Ma ◽  
...  

Development ◽  
1978 ◽  
Vol 47 (1) ◽  
pp. 111-120
Author(s):  
M. Bownes ◽  
B. D. Hames

A number of female sterile mutations on the first and third chromosomes of Drosophila melanogaster have been screened for defects in the yolk proteins using polyacrylamide gel electrophoresis. Two new mutants were identified. 6m45 accumulates all three yolk proteins (YP1, YP2 and YP3) in the haemolymph but they are all absent from the ovaries suggesting it is a yolk-protein-uptake mutant. In contrast, 1163 is a temperature-sensitive mutation with a large reduction in the quantity of YP1 in the haemolymph and ovaries at 29 °C. Both mutants are autonomous in ovary transplant experiments.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 247-256
Author(s):  
Thomas G. Wilson

A new allele of the suppressor of forked [su(f)] mutation in Drosophila melanogaster has been found and designated 1(1)su(f)ts76a. It is temperature-sensitive for suppression of forked (f) and has additional temperature-sensitive phenotypes of lethality, female sterility, and abnormal bristle formation at 29 °C. It closely resembles two other conditional alleles of su(f), 1(1)su(f)ts67g and 1(1)ts726. Female sterility at 29 °C is characterized by both disorganized egg chambers in the ovarioles and also chorion-deficient oocytes. Both of these abnormalities may be the result of premature follicle cell death. The observations on 1(1)su(f)ts76a are consistent with the proposal that the similar allele, 1(1)ts726, is a cell-lethal mutation specifically affecting mitotically active cells.


Sign in / Sign up

Export Citation Format

Share Document