proteasome subunit
Recently Published Documents


TOTAL DOCUMENTS

268
(FIVE YEARS 39)

H-INDEX

39
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nobuo Kanazawa ◽  
Hiroaki Hemmi ◽  
Noriko Kinjo ◽  
Hidenori Ohnishi ◽  
Jun Hamazaki ◽  
...  

AbstractImpaired proteasome activity due to genetic variants of certain subunits might lead to proteasome-associated autoinflammatory syndromes (PRAAS). Here we report a de novo heterozygous missense variant of the PSMB9 proteasome subunit gene in two unrelated Japanese infants resulting in amino acid substitution of the glycine (G) by aspartic acid (D) at position 156 of the encoded protein β1i. In addition to PRAAS-like manifestations, these individuals suffer from pulmonary hypertension and immunodeficiency, which are distinct from typical PRAAS symptoms. The missense variant results in impaired immunoproteasome maturation and activity, yet ubiquitin accumulation is hardly detectable in the patients. A mouse model of the heterozygous human genetic variant (Psmb9G156D/+) recapitulates the proteasome defects and the immunodeficiency phenotype of patients. Structurally, PSMB9 G156D interferes with the β-ring-βring interaction of the wild type protein that is necessary for 20S proteasome formation. We propose the term, proteasome-associated autoinflammatory syndrome with immunodeficiency (PRAAS-ID), to indicate a separate category of autoinflammatory diseases, similar to, but distinct from PRAAS, that describes the patients in this study.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3075
Author(s):  
Jinyuan Duan ◽  
Wenzhu Li ◽  
Xin Shu ◽  
Bing Yang ◽  
Xiangwei He ◽  
...  

Reversible phosphorylation has emerged as an important mechanism for regulating proteasome function in various physiological processes. Essentially all proteasome phosphorylations characterized thus far occur on proteasome holoenzyme or subcomplexes to regulate substrate degradation. Here, we report a highly conserved phosphorylation that only exists on the unassembled α5 subunit of the proteasome. The modified residue, α5-Ser16, is within a SP motif typically recognized by cyclin-dependent kinases (CDKs). Using a phospho-specific antibody generated against this site, we found that α5-S16 phosphorylation is mitosis-specific in both yeast and mammalian cells. Blocking this site with a S16A mutation caused growth defect and G2/M arrest of the cell cycle. α5-S16 phosphorylation depends on CDK1 activity and is highly abundant in some but not all mitotic cells. Immunoprecipitation and mass spectrometry (IP-MS) studies identified numerous proteins that could interact with phosphorylated α5, including PLK1, a key regulator of mitosis. α5–PLK1 interaction increased upon mitosis and could be facilitated by S16 phosphorylation. CDK1 activation downstream of PLK1 activity was delayed in S16A mutant cells, suggesting an important role of α5-S16 phosphorylation in regulating PLK1 and mitosis. These data have revealed an unappreciated function of “exo-proteasome” phosphorylation of a proteasome subunit and may bring new insights to our understanding of cell cycle control.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 752
Author(s):  
Zhengqing Yu ◽  
Wenxi Ding ◽  
Muhammad Tahir Aleem ◽  
Junzhi Su ◽  
Junlong Liu ◽  
...  

As an important zoonotic protozoan, Toxoplasma gondii (T. gondii) has spread around the world, leading to infections in one-third of the population. There is still no effective vaccine or medicine against T. gondii, and recombinant antigens entrapped within nanospheres have benefits over traditional vaccines. In the present study, we first expressed and purified T. gondii proteasome subunit alpha type 1 (TgPSA1), then encapsulated the recombinant TgPSA1 (rTgPSA1) in chitosan nanospheres (CS nanospheres, rTgPSA1/CS nanospheres) and incomplete Freund’s adjuvant (IFA, rTgPSA1/IFA emulsion). Antigens entrapped in CS nanospheres reached an encapsulation efficiency of 67.39%, and rTgPSA1/CS nanospheres showed a more stable release profile compared to rTgPSA1/IFA emulsion in vitro. In vivo, Th1-biased cellular and humoral immune responses were induced in mice and chickens immunized with rTgPSA1/CS nanospheres and rTgPSA1/IFA emulsion, accompanied by promoted production of antibodies, IFN-γ, IL-4, and IL-17, and modulated production of IL-10. Immunization with rTgPSA1/CS nanospheres and rTgPSA1/IFA emulsion conferred significant protection, with prolonged survival time in mice and significantly decreased parasite burden in chickens. Furthermore, our results also indicate that rTgPSA1/CS nanospheres could be used as a substitute for rTgPSA1/IFA emulsion, with the optimal administration route being intramuscular in mass vaccination. Collectively, the results of this study indicate that rTgPSA1/CS nanospheres represent a promising vaccine to protect animals against acute toxoplasmosis.


2021 ◽  
Vol 22 (9) ◽  
pp. 4319
Author(s):  
Wenjuan Zhang ◽  
Bo Huang ◽  
Limo Gao ◽  
Cao Huang

Proteasomal dysfunction is known to be associated with amyotrophic lateral sclerosis and frontotemporal degeneration (ALS/FTD). Our previous reports have shown that a mutant form of ubiquilin-2 (UBQLN2) linked to ALS/FTD leads to neurodegeneration accompanied by accumulations of the proteasome subunit Rpt1 in transgenic rats, but the precise pathogenic mechanisms of how this mutation impairs the proteasome remains to be elucidated. Here, we reveal that this UBQLN2 mutation in rats disrupted the proteasome integrity prior to neurodegeneration, that it dissociated the 26S proteasome in vitro, and that its depletion did not affect 26S proteasome assembly. During both disease progression and in an age-dependent manner, we found that proteasome subunits were translocated to the nucleus, including both of the 20S core particles (PSMA1 and PSMB7) and the 19S regulatory particles (Rpt1 and Rpn1), suggesting that defective proteasome function may result from the proteasome-subunit mislocalization. Taken together, the present data demonstrate that impaired proteasome assembly is an early event in the pathogenesis of UBQLN2-associated neurodegeneration in mutant UBQLN2 rats.


2021 ◽  
Vol 13 ◽  
Author(s):  
Brooke N. Dulka ◽  
Sydney Trask ◽  
Fred J. Helmstetter

Aging is marked by an accumulation of damaged and modified brain proteins, and the ubiquitin-proteasome system (UPS) is important for cellular protein degradation. Recent work has established a critical role for the UPS in memory and synaptic plasticity, but the role of the UPS in age-related cognitive decline remains poorly understood. We trained young, middle-aged, and aged male and female rats using trace fear conditioning (TFC) to investigate the effects of age and sex on memory. We then measured markers of UPS-related protein degradation (phosphorylation of the Rpt6 proteasome regulatory subunit and K48-linked polyubiquitination) using western blots. We found that aged males, but not aged females, showed behavioral deficits at memory retrieval. Aged males also displayed reduced phosphorylation of the Rpt6 proteasome subunit and accumulation of K48 in the basolateral amygdala, while aged females displayed a similar pattern in the medial prefrontal cortex. These findings suggest that markers of UPS function are differentially affected by age and sex in a brain region-dependent manner. Together these results provide an important step toward understanding the UPS and circuit-level differences in aging males and females.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 665
Author(s):  
Margot S.F. Roeten ◽  
Johan van Meerloo ◽  
Zinia J. Kwidama ◽  
Giovanna ter Huizen ◽  
Wouter H. Segerink ◽  
...  

At present, 20–30% of children with acute leukemia still relapse from current chemotherapy protocols, underscoring the unmet need for new treatment options, such as proteasome inhibition. Ixazomib (IXA) is an orally available proteasome inhibitor, with an improved safety profile compared to Bortezomib (BTZ). The mechanism of action (proteasome subunit inhibition, apoptosis induction) and growth inhibitory potential of IXA vs. BTZ were tested in vitro in human (BTZ-resistant) leukemia cell lines. Ex vivo activity of IXA vs. BTZ was analyzed in 15 acute lymphoblastic leukemia (ALL) and 9 acute myeloid leukemia (AML) primary pediatric patient samples. BTZ demonstrated more potent inhibitory effects on constitutive β5 and immunoproteasome β5i proteasome subunit activity; however, IXA more potently inhibited β1i subunit than BTZ (70% vs. 29% at 2.5 nM). In ALL/AML cell lines, IXA conveyed 50% growth inhibition at low nanomolar concentrations, but was ~10-fold less potent than BTZ. BTZ-resistant cells (150–160 fold) displayed similar (100-fold) cross-resistance to IXA. Finally, IXA and BTZ exhibited anti-leukemic effects for primary ex vivo ALL and AML cells; mean LC50 (nM) for IXA: 24 ± 11 and 30 ± 8, respectively, and mean LC50 for BTZ: 4.5 ± 1 and 11 ± 4, respectively. IXA has overlapping mechanisms of action with BTZ and showed anti-leukemic activity in primary leukemic cells, encouraging further pre-clinical in vivo evaluation.


Sign in / Sign up

Export Citation Format

Share Document