scholarly journals Mating-Type-Specific Ribosomal Proteins Control Aspects of Sexual Reproduction in Cryptococcus neoformans

Genetics ◽  
2019 ◽  
Vol 214 (3) ◽  
pp. 635-649 ◽  
Author(s):  
Giuseppe Ianiri ◽  
Yufeng “Francis” Fang ◽  
Tim A. Dahlmann ◽  
Shelly Applen Clancey ◽  
Guilhem Janbon ◽  
...  

The MAT locus of Cryptococcus neoformans has a bipolar organization characterized by an unusually large structure, spanning over 100 kb. MAT genes have been characterized by functional genetics as being involved in sexual reproduction and virulence. However, classical gene replacement failed to achieve mutants for five MAT genes (RPL22, RPO41, MYO2, PRT1, and RPL39), indicating that they are likely essential. In the present study, targeted gene replacement was performed in a diploid strain for both the α and a alleles of the ribosomal genes RPL22 and RPL39. Mendelian analysis of the progeny confirmed that both RPL22 and RPL39 are essential for viability. Ectopic integration of the RPL22 allele of opposite MAT identity in the heterozygous RPL22a/rpl22αΔ or RPL22α/rpl22aΔ mutant strains failed to complement their essential phenotype. Evidence suggests that this is due to differential expression of the RPL22 genes, and an RNAi-dependent mechanism that contributes to control RPL22a expression. Furthermore, via CRISPR/Cas9 technology, the RPL22 alleles were exchanged in haploid MATα and MATa strains of C. neoformans. These RPL22 exchange strains displayed morphological and genetic defects during bilateral mating. These results contribute to elucidating functions of C. neoformans essential mating type genes that may constitute a type of imprinting system to promote inheritance of nuclei of both mating types.

2019 ◽  
Author(s):  
Giuseppe Ianiri ◽  
Yufeng “Francis” Fang ◽  
Tim A. Dahlmann ◽  
Shelly Applen Clancey ◽  
Guilhem Janbon ◽  
...  

AbstractThe MAT locus of Cryptococcus neoformans has a bipolar organization characterized by an unusually large structure, spanning over 100 kb. MAT genes have been characterized by functional genetics as being involved in sexual reproduction and virulence. However, classical gene replacement failed to achieve mutants for five MAT genes (RPL22, RPO41, MYO2, PRT1, RPL39), indicating that they are likely essential. In the present study, targeted gene replacement was performed in a diploid strain for both the α and a alleles of the ribosomal genes RPL22 and RPL39. Mendelian analysis of the progeny confirmed that both RPL22 and RPL39 are essential for viability. Ectopic integration of the RPL22 allele of opposite MAT identity in the heterozygous RPL22a/rpl22αΔ or RPL22α/rpl22aΔ mutant strains failed to complement their essential phenotype. Evidence suggests that this is due to differential expression of the RPL22 genes, and an RNAi-dependent mechanism that contributes to control RPL22a expression. Furthermore, via CRISPR/Cas9 technology the RPL22 alleles were exchanged in haploid MATα and MATa strains of C. neoformans. These RPL22 exchange strains displayed morphological and genetic defects during bilateral mating. These results contribute to elucidate functions of C. neoformans essential mating type genes that may constitute a type of imprinting system to promote inheritance of nuclei of both mating types.


Nature ◽  
2005 ◽  
Vol 434 (7036) ◽  
pp. 1017-1021 ◽  
Author(s):  
Xiaorong Lin ◽  
Christina M. Hull ◽  
Joseph Heitman

1999 ◽  
Vol 19 (8) ◽  
pp. 5393-5404 ◽  
Author(s):  
Baojie Li ◽  
Concepcion R. Nierras ◽  
Jonathan R. Warner

ABSTRACT The ribosomal proteins (RPs) of Saccharomyces cerevisiae are encoded by 137 genes that are among the most transcriptionally active in the genome. These genes are coordinately regulated: a shift up in temperature leads to a rapid, but temporary, decline in RP mRNA levels. A defect in any part of the secretory pathway leads to greatly reduced ribosome synthesis, including the rapid loss of RP mRNA. Here we demonstrate that the loss of RP mRNA is due to the rapid transcriptional silencing of the RP genes, coupled to the naturally short lifetime of their transcripts. The data suggest further that a global inhibition of polymerase II transcription leads to overestimates of the stability of individual mRNAs. The transcription of most RP genes is activated by two Rap1p binding sites, 250 to 400 bp upstream from the initiation of transcription. Rap1p is both an activator and a silencer of transcription. The swapping of promoters between RPL30 and ACT1 orGAL1 demonstrated that the Rap1p binding sites ofRPL30 are sufficient to silence the transcription ofACT1 in response to a defect in the secretory pathway. Sir3p and Sir4p, implicated in the Rap1p-mediated repression of silent mating type genes and of telomere-proximal genes, do not influence such silencing of RP genes. Sir2p, implicated in the silencing both of the silent mating type genes and of genes within the ribosomal DNA locus, does not influence the repression of either RP or rRNA genes. Surprisingly, the 180-bp sequence of RPL30 that lies between the Rap1p sites and the transcription initiation site is also sufficient to silence the Gal4p-driven transcription in response to a defect in the secretory pathway, by a mechanism that requires the silencing region of Rap1p. We conclude that for Rap1p to activate the transcription of an RP gene it must bind to upstream sequences; yet for Rap1p to repress the transcription of an RP gene it need not bind to the gene directly. Thus, the cell has evolved a two-pronged approach to effect the rapid extinction of RP synthesis in response to the stress imposed by a heat shock or by a failure of the secretory pathway. Calculations based on recent transcriptome data and on the half-life of the RP mRNAs suggest that in a rapidly growing cell the transcription of RP mRNAs accounts for nearly 50% of the total transcriptional events initiated by RNA polymerase II. Thus, the sudden silencing of the RP genes must have a dramatic effect on the overall transcriptional economy of the cell.


2012 ◽  
Vol 78 (8) ◽  
pp. 2819-2829 ◽  
Author(s):  
Ryuta Wada ◽  
Jun-ichi Maruyama ◽  
Haruka Yamaguchi ◽  
Nanase Yamamoto ◽  
Yutaka Wagu ◽  
...  

ABSTRACTThe potential for sexual reproduction inAspergillus oryzaewas assessed by investigating the presence and functionality ofMATgenes. Previous genome studies had identified aMAT1-1gene in the reference strain RIB40. We now report the existence of a complementaryMAT1-2gene and the sequencing of an idiomorphic region fromA. oryzaestrain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of theMAT1-1andMAT1-2genotypes among 180 strains assayed, including industrialtane-kojiisolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in whichMATgenes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both theMAT1-1andMAT1-2genes functionally regulate gene expression inA. oryzaein a mating type-dependent manner, the first such report for a supposedly asexual fungus.MAT1-1expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system inA. oryzae, and prospects for the discovery of a sexual cycle are discussed.


Genetics ◽  
2012 ◽  
Vol 190 (4) ◽  
pp. 1389-1404 ◽  
Author(s):  
Hyojeong Kim ◽  
Sara J. Wright ◽  
Gyungsoon Park ◽  
Shouqiang Ouyang ◽  
Svetlana Krystofova ◽  
...  

2010 ◽  
Vol 9 (6) ◽  
pp. 847-859 ◽  
Author(s):  
Marjatta Raudaskoski ◽  
Erika Kothe

ABSTRACT The genome sequences of the basidiomycete Agaricomycetes species Coprinopsis cinerea, Laccaria bicolor, Schizophyllum commune, Phanerochaete chrysosporium, and Postia placenta, as well as of Cryptococcus neoformans and Ustilago maydis, are now publicly available. Out of these fungi, C. cinerea, S. commune, and U. maydis, together with the budding yeast Saccharomyces cerevisiae, have been investigated for years genetically and molecularly for signaling in sexual reproduction. The comparison of the structure and organization of mating type genes in fungal genomes reveals an amazing conservation of genes regulating the sexual reproduction throughout the fungal kingdom. In agaricomycetes, two mating type loci, A, coding for homeodomain type transcription factors, and B, encoding a pheromone/receptor system, regulate the four typical mating interactions of tetrapolar species. Evidence for both A and B mating type genes can also be identified in basidiomycetes with bipolar systems, where only two mating interactions are seen. In some of these fungi, the B locus has lost its self/nonself discrimination ability and thus its specificity while retaining the other regulatory functions in development. In silico analyses now also permit the identification of putative components of the pheromone-dependent signaling pathways. Induction of these signaling cascades leads to development of dikaryotic mycelia, fruiting body formation, and meiotic spore production. In pheromone-dependent signaling, the role of heterotrimeric G proteins, components of a mitogen-activated protein kinase (MAPK) cascade, and cyclic AMP-dependent pathways can now be defined. Additionally, the pheromone-dependent signaling through monomeric, small GTPases potentially involved in creating the polarized cytoskeleton for reciprocal nuclear exchange and migration during mating is predicted.


Sign in / Sign up

Export Citation Format

Share Document