scholarly journals Reversible Data Hiding Based on Image Interpolation with a Secret Message Reduction Strategy

Author(s):  
Tzu-Chuen Lu ◽  
Mei-Chen Lin ◽  
Chun-Chih Huang ◽  
Kuang-Mao Deng
2021 ◽  
Vol 11 (15) ◽  
pp. 6741
Author(s):  
Chia-Chen Lin ◽  
Thai-Son Nguyen ◽  
Chin-Chen Chang ◽  
Wen-Chi Chang

Reversible data hiding has attracted significant attention from researchers because it can extract an embedded secret message correctly and recover a cover image without distortion. In this paper, a novel, efficient reversible data hiding scheme is proposed for absolute moment block truncation code (AMBTC) compressed images. The proposed scheme is based on the high correlation of neighboring values in two mean tables of AMBTC-compressed images to further losslessly encode these values and create free space for containing a secret message. Experimental results demonstrated that the proposed scheme obtained a high embedding capacity and guaranteed the same PSNRs as the traditional AMBTC algorithm. In addition, the proposed scheme achieved a higher embedding capacity and higher efficiency rate than those of some previous schemes while maintaining an acceptable bit rate.


2014 ◽  
Vol 6 (3) ◽  
pp. 16-29
Author(s):  
Xiyu Han ◽  
Zhenxing Qian ◽  
Guorui Feng ◽  
Xinpeng Zhang

This paper proposes a novel method for data hiding in encrypted image using image interpolation. Before the image encryption, the original image is sampled and an interpolation algorithm is used to calculate an estimation of the original image. Errors between the original image and the estimated image are compressed by Huffman encoding, which are further embedded into the estimated image to generate the redundant room. After image encryption using an encryption key, the secret bits are embedded into the reserved room. On the receiver side, the hidden bits can be extracted and the original content of the image can be perfectly recovered. Compared with the published results, the proposed method provides a larger embedding payload.


2020 ◽  
Vol 39 (3) ◽  
pp. 2977-2990
Author(s):  
R. Anushiadevi ◽  
Padmapriya Praveenkumar ◽  
John Bosco Balaguru Rayappan ◽  
Rengarajan Amirtharajan

Digital image steganography algorithms usually suffer from a lossy restoration of the cover content after extraction of a secret message. When a cover object and confidential information are both utilised, the reversible property of the cover is inevitable. With this objective, several reversible data hiding (RDH) algorithms are available in the literature. Conversely, because both are diametrically related parameters, existing RDH algorithms focus on either a good embedding capacity (EC) or better stego-image quality. In this paper, a pixel expansion reversible data hiding (PE-RDH) method with a high EC and good stego-image quality are proposed. The proposed PE-RDH method was based on three typical RDH schemes, namely difference expansion, histogram shifting, and pixel value ordering. The PE-RDH method has an average EC of 0.75 bpp, with an average peak signal-to-noise ratio (PSNR) of 30.89 dB. It offers 100% recovery of the original image and confidential hidden messages. To protect secret as well as cover the proposed PE-RDH is also implemented on the encrypted image by using homomorphic encryption. The strength of the proposed method on the encrypted image was verified based on a comparison with several existing methods, and the approach achieved better results than these methods in terms of its EC, location map size and imperceptibility of directly decrypted images.


Sign in / Sign up

Export Citation Format

Share Document