Preparation of Bismuth (III) Malates by Precipitation from Nitrate Solutions

Keyword(s):  
1984 ◽  
Vol 49 (5) ◽  
pp. 1109-1115
Author(s):  
Jindřich Novák ◽  
Zdeněk Kodejš ◽  
Ivo Sláma

The density, viscosity, and electrical conductivity of highly concentrated solutions of ammonium nitrate in dimethyl sulphoxide have been determined over the temperature range 10-60 °C and the concentration range 7-50 mol% of the salt. The variations in the quantities as a function of temperature and concentration have been correlated by empirical equations. A comparison is made between the transport properties for the present system, aqueous solutions of ammonium nitrate, and calcium nitrate solutions in dimethyl sulphoxide.


1981 ◽  
Vol 46 (1) ◽  
pp. 194-200 ◽  
Author(s):  
Marta Vojtíšková ◽  
Věra Jedináková ◽  
Libor Kuča

Benzyldibutylamine is a suitable extractant for the separation of Am(III) and Ln(III) from the acidic nitrate solutions. The effect of lanthanides and yttrium on the extraction of Am(III) has been followed under the conditions modelling the content of these components in the spent nuclear fuel. The separation factors αAm/Ln were evaluated for the optimum conditions found for the separation of Am(III) from the lanthanides. The coextraction of nitric acid and water into the organic phase is discussed.


1991 ◽  
Vol 56 (10) ◽  
pp. 2142-2147
Author(s):  
Ivo Sláma

The dependence of the induction period of crystallization on supercooling was examined for the silver nitrate-ethylene glycol system over the concentration region of silver nitrate lome fraction of 0 to 0.12. Addition of AgNO3 to ethylene glycol was found to increase considerably the critical induction period of crystallization, although to a lesser extent than Ca(NO3)2, CaCl2, ZnCl2, LiCl and LiNO3 do. The effect of these salts on the critical induction period of crystallization in dimethylsulfoxide, dimethylformamide, dimethylacetamide and methanol was compared in terms of the solvent-rich composition limit of the glass-forming ability. By using the TTT(Time-Temperature-Transformation) theory, it has been deduced that the effect of the salts on the critical induction period of crystallization of ethylene glycol is probably due to the different dependences of viscosity on their concentration in ethylene glyco in the supercooling region.


Sign in / Sign up

Export Citation Format

Share Document