temperature transformation
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 46)

H-INDEX

36
(FIVE YEARS 4)

2022 ◽  
pp. 109-120
Author(s):  
Alexey Yurichev

The study focuses on gold and silver accessory minerals (native silver, cuprous gold, luanheite (Ag3Hg), unspecified mineral phase (Cu,Ag,Hg), first diagnosed in dunites and apodunite serpentinites of the Kyzyr-Burlyuksky ultramafic massif, which is part of the Kurtushibin ophiolite belt of Western Sayan. The revealed ore minerals are mainly observed in the form of single hypidiomorphic, irregular microscopic precipitates (0.5– 3.0 μm) mainly inside magnetite, much less often in grains of avaruite. Typomorphic and chemical features of ore minerals, their natural setting in rock-forming silicate matrix are characterized. Formation and concentration of these accessory minerals is associated with superimposed low-temperature transformation (hydration) processes affecting original ultramafic rocks. At the same time, the presence of luanheite and an unnamed phase (Cu,Ag,Hg), along with the previously identified potarite (PdHg), is probably evidence of low-temperature conditions of mineral formation during the manifestation of epigenetic processes of serpentinization (lowgrade metamorphism) due to solutions enriched in mercury. The source of such solutions could be gabbro intrusions that penetrated later into the main ultramafic body.


Author(s):  
O. M. Dyakonov ◽  
V. Yu. Sereda

The process of inorganic and organic components temperature transformation of metal waste into solid and gaseous products in a continuous hot briquetting muffle furnace has been studied. The composition of the hydrocarbon atmosphere formed in the muffle under conditions of limited access to the oxidizer has been determined. It is shown that the thermal destruction of the coolant oil phase proceeds according to a complex mechanism of consecutive reactions, including polycondensation, polymerization, and deep compaction with a constant decrease in the hydrogen content and ends with the formation of a coke‑like carbon residue on the surface of metal particles and an air suspension of finely dispersed carbon particles (smoke). When it is heated to hot briquetting temperatures of 750–850 °C, chemically active dispersions of ferrous metals are protected from oxidation first by a hydrocarbon gas with a density of 9.0–13.5 kg/m3, then by a pyrocarbon coating with a thickness of 0.1–0.3 mm up to the completion of the processes of pressing and cooling the briquette.


Author(s):  
Carl M. Frostenson ◽  
Erik Jedvik Granhed ◽  
Vivekanand Shukla ◽  
Pär A. T Olsson ◽  
Elsebeth Schröder ◽  
...  

Abstract We present the idea and illustrate potential benefits of having a tool chain of closely related regular, unscreened and screened hybrid exchange-correlation (XC) functionals, all within the consistent formulation of the van der Waals density functional (vdW-DF) method [JPCM 32, 393001 (2020)]. Use of this chain of nonempirical XC functionals allows us to map when the inclusion of truly nonlocal exchange and of truly nonlocal correlation is important. Here we begin the mapping by addressing hard and soft material challenges: magnetic elements, perovskites, and biomolecular problems. We also predict the structure and polarization for a ferroelectric polymer. To facilitate this work and future broader explorations, we present a stress formulation for spin vdW-DF and illustrate the use of a simple stability-modeling scheme. The modeling supplements DFT (with a specific XC functional) by asserting whether the finding of a soft mode (an imaginary-frequency vibrational mode, ubiquitous in perovskites and soft matter) implies an actual DFT-based prediction of a low-temperature transformation.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1485
Author(s):  
Ina Beate Jenssen ◽  
Oluf Bøckman ◽  
Jens-Petter Andreassen ◽  
Seniz Ucar

Recycling of valuable metals such as nickel is instrumental to meet the need from the dramatic increase in electric vehicle battery production and to improve its sustainability. Nickel required in the battery manufacture can be recovered from the hydrometallurgical industrial process streams by crystallization of nickel sulfate. Here, crystallization of nickel sulfate is studied from an industrial point of view, investigating the effects of temperature, seeding and presence of magnesium on the formation of various solid phases for the evaluation of their potential influence on the process design. Results showed that the precipitating phase was dictated both by seed amount and reaction temperature. Transformation of metastable phases both in suspension and in a dry state was observed over time. Presence of magnesium was shown to promote formation of NiSO4·7H2O in solution and increased its stability in a dry form. In their dry state, nickel sulfate that was formed in the absence of magnesium transformed towards α-NiSO4·6H2O, whereas those precipitated in the presence of high magnesium concentrations transformed towards β-NiSO4·6H2O, indicating that magnesium inhibited the phase transformation towards α-NiSO4·6H2O. Knowledge about various solid phases of varying crystal morphology and stability can be used as input to decisions for the best suited solid product type and how this relates to the initial conditions of the sidestreams.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3474
Author(s):  
Shidi Huang ◽  
Guiming Zhang ◽  
Weiping Du ◽  
Huifang Chen

A time–temperature–transformation–viscosity (TTT-η) diagram can reflect changes in the physical states of a resin, which take on significance for the study of the curing process of polyurethane resin lenses. Coupling the differential scanning calorimetry (DSC) test, the curing kinetic parameters of 1,4-bis(isocyanatomethyl)cyclohexane (H6XDI)/2,3-bis((2-mercaptoethyl)thio)-1-propanethiol (BES) polyurethane system were obtained. By phenomenological modeling, the relationships between degree, temperature, and time were obtained. An isothermal DSC test was carried out at 423 K. Based on the DiBenedetto equation, the relationships between glass transition temperature, degree of cure, and time were obtained, and the glass transition temperature was thus correlated with temperature and time. The gelation time at different temperatures was measured by rotary rheometry, and the relationship between gelation time and gelation temperature was established. The time–temperature–transformation (TTT) diagram of H6XDI/BES system was constructed accordingly. Subsequently, a six-parameter double Arrhenius equation was used as the basis for the rheological study. The viscosity was examined during the curing process. The TTT-η diagram was obtained, which laid the theoretical foundation for the optimization and setting of processing parameters.


2021 ◽  
Author(s):  
Malvine N. Strakova ◽  
Alvis Eimuss ◽  
Vadims Geža ◽  
Mihails Ščepanskis ◽  
Marcus Hellriegel

Abstract Recent developments in additive manufacturing (also called 3D printing of inductors) have opened new possibilities in the induction heating field by making inductors that have a longer service life and are more reproducible. Computer simulations were done to compare inductors made with two different techniques – conventional manufacturing and additive manufacturing. To compare inductor performance, heating of the soldered joints, the change in power consumption in the inductors and the temperature field in the workpiece were studied. Also, different steel structures such as austenite, bainite, pearlite, and martensite were studied to measure the case depth of the workpiece. All calculations were done by using CENOS simulation software, which uses a coupled electromagnetic-thermal model to describe the induction heating process. For the phase transition calculations a time temperature transformation diagram was used.


Sign in / Sign up

Export Citation Format

Share Document