scholarly journals Digital twin control of multi-axis wood CNC machining center based on LinuxCNC

BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 1115-1130
Author(s):  
Aleksandar Rakic ◽  
Sasa Zivanovic ◽  
Zoran Dimic ◽  
Mladen Knezevic

This paper presents an application of an open architecture control system implemented on a multi-axis wood computer numerical control milling machining center, as a digital twin control. The development of the digital twin control system was motivated by research and educational requirements, especially in the field of configuring a new control system by “virtual commissioning”, enabling the validation of the developed controls, program verification, and analysis of the machining process and monitoring. The considered wood computer numerical control (CNC) machining system is supported by an equivalent virtual machine in a computer-aided design and computer-aided manufacturing (CAD/CAM) environment, as well as in the control system, as a digital twin. The configured virtual machines are used for the verification of the machining program and programming system via machining simulation, which is extremely important in multi-axis machining. Several test wood workpieces were machined to validate the effectiveness of the developed control system based on LinuxCNC.

2021 ◽  
Vol 49 (3) ◽  
pp. 696-703
Author(s):  
Nikola Vorkapić ◽  
Saša Živanović ◽  
Zoran Dimić ◽  
Branko Kokotović ◽  
Nikola Slavković

This paper describes configuring the virtual horizontal machining center LOLA HBG80 within the programming and verification system and the open architecture control system. The horizontal machining center LOLA HBG 80 is represented by an equivalent virtual machine in a CAD/CAM environment (PTC Creo and Catia), STEP-NC Machine environment, and the control system. Virtual simulation is essential for machining, and the developed virtual machines are used for program verification and monitoring of the machining process. The virtual machine in the programming system allows the verification of the program before sending it to the real machine and includes verification of the tool path (CLF-Cutter Location File) and G-code. The paper also discusses the possibility of applying a new programming method known as STEP-NC and preparing an adequate environment that includes a virtual machine. The virtual machine in the control system represents the last level for the final program verification and the process monitoring system.


Author(s):  
Xian Cao ◽  
Gang Zhao ◽  
Wenlei Xiao

Digital Twin has become a frontier research topic in recent years and the important development direction of intelligent manufacturing. For numerical control machining, a Digital Twin system can be used as an intelligent monitoring and analysis center by reflecting the real machining process in a virtual environment. The machining simulation is the key technology to realize this kind of application. However, existing machining simulation systems are designed for off-line situation that cannot be used directly in Digital Twin environment. The challenges for machining simulation are analyzed and explained in this article: (1) complete process data representation in simulation system; (2) executing in cooperating with computer numerical control system; (3) more efficient simulation algorithm. In order to meet these challenges, a new machining simulation system is proposed. STEP-NC standard is used to save complete process data exported from the computer-aided manufacturing system and synchronization algorithm is developed based on the communication data of computer numerical control system. Most importantly, an optimized tri-dexel-based machining simulation algorithm is developed to perform high efficiency that can follow the real machining process. Finally, a Digital Twin system for NC machining is presented that has been tested and verified in a workshop located in COMAC (Commercial Aircraft Corporation of China Ltd).


2013 ◽  
Vol 313-314 ◽  
pp. 1135-1138
Author(s):  
Xing Guo Liu ◽  
Chi Gang Deng ◽  
Yu Hang Liu ◽  
Qing Ying Zhao

Five-axis linkage CNC Machining CenterXH756 has five axis -- X, Y, Z, A, B, can achieve five axis linkage processing function, is the most ideal equipment of processing space curve CAM, cylindrical CAM and die. Its numerical control system is M520 of Mitsubishi of Japan. XH756 is most advanced CNC processing equipment with high precision in China now.


2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771038 ◽  
Author(s):  
Isad Saric ◽  
Adil Muminovic ◽  
Mirsad Colic ◽  
Senad Rahimic

This article presents architecture of integrated intelligent computer-aided design system for designing mechanical power-transmitting mechanisms (IICADkmps). The system has been developed in C# program environment with the aim of automatising the design process. This article presents a modern, automated approach to design. Developed kmps modules for calculation of geometrical and design characteristics of mechanical power-transmitting mechanisms are described. Three-dimensional geometrical parameter modelling of mechanical power-transmitting mechanisms was performed in the computer-aided design/computer-aided manufacturing/computer-aided engineering system CATIA V5. The connection between kmps calculation modules and CATIA V5 modelling system was established through initial three-dimensional models – templates. The outputs from the developed IICADkmps system generated final three-dimensional virtual models of mechanical power-transmitting mechanisms. Testing of the developed IICADkmps system was performed on friction, belt, cogged (spur and bevel gears) and chain transmitting mechanisms. Also, connection of the developed IICADkmps system with a device for rapid prototyping and computer numerical control machines was made for the purpose of additional testing and verification of practical use. Physical prototypes of designed characteristic elements of mechanical power-transmitting mechanisms were manufactured. The selected test three-dimensional virtual prototypes, obtained as an output from the developed IICADkmps system, were manufactured on the device for rapid prototyping (three-dimensional colour printer Spectrum Z510) and computer numerical control machines. Finally, at the end of the article, conclusions and suggested possible directions of further research, based on theoretical and practical research results, are presented.


Sign in / Sign up

Export Citation Format

Share Document