computer numerical control system
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Xian Cao ◽  
Gang Zhao ◽  
Wenlei Xiao

Digital Twin has become a frontier research topic in recent years and the important development direction of intelligent manufacturing. For numerical control machining, a Digital Twin system can be used as an intelligent monitoring and analysis center by reflecting the real machining process in a virtual environment. The machining simulation is the key technology to realize this kind of application. However, existing machining simulation systems are designed for off-line situation that cannot be used directly in Digital Twin environment. The challenges for machining simulation are analyzed and explained in this article: (1) complete process data representation in simulation system; (2) executing in cooperating with computer numerical control system; (3) more efficient simulation algorithm. In order to meet these challenges, a new machining simulation system is proposed. STEP-NC standard is used to save complete process data exported from the computer-aided manufacturing system and synchronization algorithm is developed based on the communication data of computer numerical control system. Most importantly, an optimized tri-dexel-based machining simulation algorithm is developed to perform high efficiency that can follow the real machining process. Finally, a Digital Twin system for NC machining is presented that has been tested and verified in a workshop located in COMAC (Commercial Aircraft Corporation of China Ltd).


Author(s):  
Jinfeng Du ◽  
Liqiang Zhang ◽  
Tian Gao

When machining a series of short linear segments, the computer numerical control system interpolates the machining path with the pre-specified spline curve to obtain continuous feed motion. However, to obtain adequate smooth tool-paths to smooth the feed velocity and acceleration, the computer-aided manufacturing system needs to use a higher order spline curve, which will be limited by some technical bottlenecks. In this article, a new real-time interpolation algorithm is proposed from the perspective of kinematics to achieve uninterrupted feed motion throughout the global tool-path. At the same time, the acceleration profile achieves G2 continuous to avoid unnecessary feed frustration and inertial impact, reaching the balance between time-optimal and motion performance. First, the jounce-limited acceleration curve is blended at the corner of the machining path, and the optimal cornering transition velocity is obtained by adding the velocity, acceleration and contour error constraints to the corner transition motion. Then, according to the linear segments with different lengths between the corners, combined with the feed motion around the corner, a look-ahead interpolation algorithm is proposed to calculate the maximum feed rate with the constraint of the linear segment length and kinematic boundary conditions. At last, for the linear segments whose corner contours overlap with each other after interpolation, the smooth transition between the two corners can be realized by mixing the feed motion of the next corner. Compared with non-uniform rational B-spline interpolation algorithm, the proposed algorithm reduces the total machining time by 14% and the computer numerical control system improves the computational efficiency by 11%. It proves that the proposed algorithm has better application value in the manufacturing of complex parts.


Sign in / Sign up

Export Citation Format

Share Document