scholarly journals Discounted payments theorems for large deviations

2016 ◽  
Vol 57 ◽  
Author(s):  
Aurelija Kasparavičiūtė ◽  
Dovilė Deltuvienė

  Let Z(t) = Σ j=1N(t) Xj, t ≥ 0, be a stochastic process, where Xj are independent identically distributed random variables, and N(t) is non-negative integer-valued process with independent increments. Throughout, we assume that N(t) and Xj are independent. The paper considers normal approximation to the distribution of properly centered and normed random variable Zδ =∫0∞e- δt dZ(t), δ > 0, taking into consideration large deviations both in the Cramér zone and the power Linnik zones. Also, we obtain a nonuniform estimate in the Berry–Essen inequality. 

2011 ◽  
Vol 52 ◽  
pp. 369-374
Author(s):  
Aurelija Kasparavičiūtė ◽  
Leonas Saulis

In this paper, we consider a compound random variable Z = \sum^N_{j=1} vjXj , where 0 < v < 1, Z = 0, if N = 0. It is assumed that independent identically distributed random variables X1,X2, . . . with mean EX = μ and variance DX =σ2 > 0 are independent of a non-negative integer-valued random variable N. It should be noted that, in this scheme of summation, we must consider two cases: μ\neq 0 and μ = 0. The paper is designatedto the research of the upper estimates of normal approximation to the sum ˜ Z = (Z −EZ)(DZ)−1/2, theorems on large deviations in the Cramer and power Linnik zones and exponential inequalities for P( ˜ Z > x).    


2010 ◽  
Vol 51 ◽  
Author(s):  
Aurelija Kasparavičiūtė ◽  
Leonas Saulis

In this paper, we present the rate of convergence of normal approximation and the theorem on large deviations for a compound process Zt = \sumNt i=1 t aiXi, where Z0 = 0 and ai > 0, of weighted independent identically distributed random variables Xi, i = 1, 2, . . . with  mean EXi = µ and variance DXi = σ2 > 0. It is assumed that Nt is a non-negative integervalued random variable, which depends on t > 0 and is independent of Xi, i = 1, 2, . . . .


2021 ◽  
Vol 47 ◽  
Author(s):  
Leonas Saulis ◽  
Dovilė Deltuvienė

Normal aproximationof sum Zt =ΣNti=1Xi of i.i.d. random variables (r.v.) Xi , i = 1, 2, . . . with mean EXi = μ and variance DXi = σ2 > 0 is analyzed taking into consideration large deviations. Here Nt is non-negative integer-valued random variable, which depends on t , but not depends at Xi , i = 1, 2, . . ..


2013 ◽  
Vol 18 (2) ◽  
pp. 129-142 ◽  
Author(s):  
Aurelija Kasparavičiūtė ◽  
Leonas Saulis

In the present paper we consider weighted random sums ZN = ∑j=1NajXj, where 0 ≤ aj < ∞, N denotes a non-negative integer-valued random variable, and {X, Xj , j = 1, 2,...} is a family of independent identically distributed random variables with mean EX = µ and variance DX = σ2 > 0. Throughout this paper N is independent of {X, Xj , j = 1, 2,...} and, for definiteness, it is assumed Z0 = 0. The main idea of the paper is to present results on theorems of large deviations both in the Cramér and power Linnik zones for a sum ~ZN = (ZN − EZN )(DZN )−1/2 , exponential inequalities for a tail probability P(~ZN > x) in two cases: µ = 0 and µ ≠ 0 pointing out the difference between them. Only normal approximation is considered. It should be noted that large deviations when µ ≠ 0 have been already considered in our papers [1,2].


2021 ◽  
Vol 73 (1) ◽  
pp. 62-67
Author(s):  
Ibrahim A. Ahmad ◽  
A. R. Mugdadi

For a sequence of independent, identically distributed random variable (iid rv's) [Formula: see text] and a sequence of integer-valued random variables [Formula: see text], define the random quantiles as [Formula: see text], where [Formula: see text] denote the largest integer less than or equal to [Formula: see text], and [Formula: see text] the [Formula: see text]th order statistic in a sample [Formula: see text] and [Formula: see text]. In this note, the limiting distribution and its exact order approximation are obtained for [Formula: see text]. The limiting distribution result we obtain extends the work of several including Wretman[Formula: see text]. The exact order of normal approximation generalizes the fixed sample size results of Reiss[Formula: see text]. AMS 2000 subject classification: 60F12; 60F05; 62G30.


1969 ◽  
Vol 6 (02) ◽  
pp. 409-418 ◽  
Author(s):  
Eugene Lukacs

Let X(t) be a stochastic process whose parameter t runs over a finite or infinite n terval T. Let t 1 , t 2 ɛ T, t 1 〈 t2; the random variable X(t 2) – X(t 1) is called the increment of the process X(t) over the interval [t 1, t 2]. A process X(t) is said to be homogeneous if the distribution function of the increment X(t + τ) — X(t) depends only on the length τ of the interval but is independent of the endpoint t. Two intervals are said to be non-overlapping if they have no interior point in common. A process X(t) is called a process with independent increments if the increments over non-overlapping intervals are stochastically independent. A process X(t) is said to be continuous at the point t if plimτ→0 [X(t + τ) — X(t)] = 0, that is if for any ε &gt; 0, limτ→0 P(| X(t + τ) — X(t) | &gt; ε) = 0. A process is continuous in an interval [A, B] if it is continuous in every point of [A, B].


1969 ◽  
Vol 6 (2) ◽  
pp. 409-418 ◽  
Author(s):  
Eugene Lukacs

Let X(t) be a stochastic process whose parameter t runs over a finite or infinite n terval T. Let t1, t2 ɛ T, t1 〈 t2; the random variable X(t2) – X(t1) is called the increment of the process X(t) over the interval [t1, t2]. A process X(t) is said to be homogeneous if the distribution function of the increment X(t + τ) — X(t) depends only on the length τ of the interval but is independent of the endpoint t. Two intervals are said to be non-overlapping if they have no interior point in common. A process X(t) is called a process with independent increments if the increments over non-overlapping intervals are stochastically independent. A process X(t) is said to be continuous at the point t if plimτ→0 [X(t + τ) — X(t)] = 0, that is if for any ε > 0, limτ→0P(| X(t + τ) — X(t) | > ε) = 0. A process is continuous in an interval [A, B] if it is continuous in every point of [A, B].


1980 ◽  
Vol 12 (3) ◽  
pp. 689-709 ◽  
Author(s):  
M. Riedel

Let X(t) be a homogeneous and continuous stochastic process with independent increments. The subject of this paper is to characterize the stable process by two identically distributed stochastic integrals formed by means of X(t) (in the sense of convergence in probability). The proof of the main results is based on a modern extension of the Phragmén-Lindelöf theory.


2012 ◽  
Vol 49 (4) ◽  
pp. 1188-1193 ◽  
Author(s):  
Samim Ghamami ◽  
Sheldon M. Ross

The Asmussen–Kroese Monte Carlo estimators of P(Sn > u) and P(SN > u) are known to work well in rare event settings, where SN is the sum of independent, identically distributed heavy-tailed random variables X1,…,XN and N is a nonnegative, integer-valued random variable independent of the Xi. In this paper we show how to improve the Asmussen–Kroese estimators of both probabilities when the Xi are nonnegative. We also apply our ideas to estimate the quantity E[(SN-u)+].


1978 ◽  
Vol 15 (03) ◽  
pp. 639-644 ◽  
Author(s):  
Peter Hall

LetXn1≦Xn2≦ ··· ≦Xnndenote the order statistics from a sample ofnindependent, identically distributed random variables, and suppose that the variablesXnn, Xn,n–1, ···, when suitably normalized, have a non-trivial limiting joint distributionξ1,ξ2, ···, asn → ∞. It is well known that the limiting distribution must be one of just three types. We provide a canonical representation of the stochastic process {ξn,n≧ 1} in terms of exponential variables, and use this representation to obtain limit theorems forξnasn →∞.


Sign in / Sign up

Export Citation Format

Share Document