scholarly journals Theorems on large deviations for the sum of random number of summands

2010 ◽  
Vol 51 ◽  
Author(s):  
Aurelija Kasparavičiūtė ◽  
Leonas Saulis

In this paper, we present the rate of convergence of normal approximation and the theorem on large deviations for a compound process Zt = \sumNt i=1 t aiXi, where Z0 = 0 and ai > 0, of weighted independent identically distributed random variables Xi, i = 1, 2, . . . with  mean EXi = µ and variance DXi = σ2 > 0. It is assumed that Nt is a non-negative integervalued random variable, which depends on t > 0 and is independent of Xi, i = 1, 2, . . . .

2021 ◽  
Vol 47 ◽  
Author(s):  
Leonas Saulis ◽  
Dovilė Deltuvienė

Normal aproximationof sum Zt =ΣNti=1Xi of i.i.d. random variables (r.v.) Xi , i = 1, 2, . . . with mean EXi = μ and variance DXi = σ2 > 0 is analyzed taking into consideration large deviations. Here Nt is non-negative integer-valued random variable, which depends on t , but not depends at Xi , i = 1, 2, . . ..


2011 ◽  
Vol 52 ◽  
pp. 369-374
Author(s):  
Aurelija Kasparavičiūtė ◽  
Leonas Saulis

In this paper, we consider a compound random variable Z = \sum^N_{j=1} vjXj , where 0 < v < 1, Z = 0, if N = 0. It is assumed that independent identically distributed random variables X1,X2, . . . with mean EX = μ and variance DX =σ2 > 0 are independent of a non-negative integer-valued random variable N. It should be noted that, in this scheme of summation, we must consider two cases: μ\neq 0 and μ = 0. The paper is designatedto the research of the upper estimates of normal approximation to the sum ˜ Z = (Z −EZ)(DZ)−1/2, theorems on large deviations in the Cramer and power Linnik zones and exponential inequalities for P( ˜ Z > x).    


2013 ◽  
Vol 18 (2) ◽  
pp. 129-142 ◽  
Author(s):  
Aurelija Kasparavičiūtė ◽  
Leonas Saulis

In the present paper we consider weighted random sums ZN = ∑j=1NajXj, where 0 ≤ aj < ∞, N denotes a non-negative integer-valued random variable, and {X, Xj , j = 1, 2,...} is a family of independent identically distributed random variables with mean EX = µ and variance DX = σ2 > 0. Throughout this paper N is independent of {X, Xj , j = 1, 2,...} and, for definiteness, it is assumed Z0 = 0. The main idea of the paper is to present results on theorems of large deviations both in the Cramér and power Linnik zones for a sum ~ZN = (ZN − EZN )(DZN )−1/2 , exponential inequalities for a tail probability P(~ZN > x) in two cases: µ = 0 and µ ≠ 0 pointing out the difference between them. Only normal approximation is considered. It should be noted that large deviations when µ ≠ 0 have been already considered in our papers [1,2].


2016 ◽  
Vol 57 ◽  
Author(s):  
Aurelija Kasparavičiūtė ◽  
Dovilė Deltuvienė

  Let Z(t) = Σ j=1N(t) Xj, t ≥ 0, be a stochastic process, where Xj are independent identically distributed random variables, and N(t) is non-negative integer-valued process with independent increments. Throughout, we assume that N(t) and Xj are independent. The paper considers normal approximation to the distribution of properly centered and normed random variable Zδ =∫0∞e- δt dZ(t), δ > 0, taking into consideration large deviations both in the Cramér zone and the power Linnik zones. Also, we obtain a nonuniform estimate in the Berry–Essen inequality. 


2021 ◽  
Vol 73 (1) ◽  
pp. 62-67
Author(s):  
Ibrahim A. Ahmad ◽  
A. R. Mugdadi

For a sequence of independent, identically distributed random variable (iid rv's) [Formula: see text] and a sequence of integer-valued random variables [Formula: see text], define the random quantiles as [Formula: see text], where [Formula: see text] denote the largest integer less than or equal to [Formula: see text], and [Formula: see text] the [Formula: see text]th order statistic in a sample [Formula: see text] and [Formula: see text]. In this note, the limiting distribution and its exact order approximation are obtained for [Formula: see text]. The limiting distribution result we obtain extends the work of several including Wretman[Formula: see text]. The exact order of normal approximation generalizes the fixed sample size results of Reiss[Formula: see text]. AMS 2000 subject classification: 60F12; 60F05; 62G30.


1970 ◽  
Vol 3 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Vijay K. Rohatgi

Let {Xn} be a sequence of independent identically distributed random variables and let The rate of convergence of probabilities , where 2 > r > 1, is studied.


Filomat ◽  
2019 ◽  
Vol 33 (10) ◽  
pp. 3073-3084
Author(s):  
Tran Hung ◽  
Phan Kien

Let X1,X2,... be a sequence of independent, identically distributed random variables. Let ?p be a geometric random variable with parameter p?(0,1), independent of all Xj, j ? 1: Assume that ? : N ? R+ is a positive normalized function such that ?(n) = o(1) when n ? +?. The paper deals with the rate of convergence for distributions of randomly normalized geometric random sums ?(?p) ??p,j=1 Xj to symmetric stable laws in term of Zolotarev?s probability metric.


2012 ◽  
Vol 49 (4) ◽  
pp. 1188-1193 ◽  
Author(s):  
Samim Ghamami ◽  
Sheldon M. Ross

The Asmussen–Kroese Monte Carlo estimators of P(Sn > u) and P(SN > u) are known to work well in rare event settings, where SN is the sum of independent, identically distributed heavy-tailed random variables X1,…,XN and N is a nonnegative, integer-valued random variable independent of the Xi. In this paper we show how to improve the Asmussen–Kroese estimators of both probabilities when the Xi are nonnegative. We also apply our ideas to estimate the quantity E[(SN-u)+].


Sign in / Sign up

Export Citation Format

Share Document