scholarly journals On a generalized SVEIR epidemic model under regular and adaptive impulsive vaccination

2014 ◽  
Vol 19 (1) ◽  
pp. 83-108 ◽  
Author(s):  
Raul Nistal ◽  
Manuel De la Sen ◽  
Santiago Alonso-Quesada ◽  
Asier Ibeas

A model for a generic disease with incubation and recovered stages is proposed. It incorporates a vaccinated subpopulation which presents a partial immunity to the disease. We study the stability, periodic solutions and impulsive vaccination design in the generalized modeled system for the dynamics and spreading of the disease under impulsive and non-impulsive vaccination. First, the effect of a regular impulsive vaccination on the evolution of the subpopulations is studied. Later a non-regular impulsive vaccination strategy is introduced based on an adaptive control law for the frequency and quantity of applied vaccines. We show the later strategy improves drastically the efficiency of the vaccines and reduce the infectious subpopulation more rapidly over time compared to a regular impulsive vaccination with constant values for both the frequency and vaccines quantity.

Robotica ◽  
2005 ◽  
Vol 23 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Recep Burkan

In this study, a new approach of adaptive control law for controlling robot manipulators using the Lyapunov based theory is derived, thus the stability of an uncertain system is guaranteed. The control law includes a PD feed forward part and a full dynamics feed forward compensation part with the unknown manipulator and payload parameters. The novelty of the obtained result is that an adaptive control algorithm is developed using trigonometric functions depending on manipulator kinematics, inertia parameters and tracking error, and both system parameters and adaptation gain matrix are updated in time.


2011 ◽  
Vol 88-89 ◽  
pp. 88-92 ◽  
Author(s):  
Lu Juan Shen ◽  
Ye Bao ◽  
Jian Ping Cai

In this paper, a class of gun control system of tank is considered with uncertain parameters and the backlash-like hysteresis which modeled by a differential equation. An adaptive control law is designed with backstepping technique. Compared to exist results on tank gun control problem , in our control scheme, the effect of backlash hysteresis is considered completely than to be linearized simply and no knowledge is assumed on the uncertain parameters. the stability of closed loop system and the tracking performance can be guaranteed by this control law. Simulation studies show that this controller is effective.


Author(s):  
H Yu ◽  
S Lloyd

A computationally efficient robust adaptive control algorithm is proposed in this paper. The regressors are implemented using the desired trajectories to replace the actual trajectories in order to reduce the computational burden. To reduce the disturbance introduced by this replacement, an adaptive variable structure control law is proposed. The proposed adaptive control law results in a system that is robust to bounded input disturbances. A small modification of the control law makes the system robust to more general input disturbances. The stability analysis is in the Lyapunov sense. Simulation results demonstrate the validity of the proposed scheme.


Author(s):  
H Yu ◽  
S Lloyd

An adaptive control scheme for robot manipulators including motor dynamics is proposed in this paper. The proposed scheme avoids the assumption that the values of motor parameters are known which is required in reference (13). An exponential control law is first developed under the assumption of no uncertainty. This forms a controller structure for the adaptive control. Using this control structure, a full-order adaptive control law is proposed to overcome parameter uncertainty for both robot link and motor. The stability analysis is in the Lyapunov stability sense. The method is further extended to the task space. Extensive simulations are performed to compare the different control schemes.


1999 ◽  
Vol 13 (10) ◽  
pp. 667-676 ◽  
Author(s):  
Youngjoo Cho ◽  
Byung Suk Song ◽  
Kyongsu Yi

Sign in / Sign up

Export Citation Format

Share Document