scholarly journals Fixed point theorems for α-contractive mappings of Meir–Keeler type and applications

2014 ◽  
Vol 19 (2) ◽  
pp. 178-198 ◽  
Author(s):  
Maher Berzig ◽  
Mircea-Dan Rus

In this paper, we introduce the notion of α-contractive mapping of Meir–Keeler type in complete metric spaces and prove new theorems which assure the existence, uniqueness and iterative approximation of the fixed point for this type of contraction. The presented theorems extend, generalize and improve several existing results in literature. To validate our results, we establish the existence and uniqueness of solution to a class of third order two point boundary value problems.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kushal Roy ◽  
Sayantan Panja ◽  
Mantu Saha ◽  
Zoran D. Mitrović

Abstract In this paper we introduce some new types of contractive mappings by combining Caristi contraction, Ćirić-quasi contraction and weak contraction in the framework of a metric space. We prove some fixed point theorems for such type of mappings over complete metric spaces with the help of φ-diminishing property. Some examples are given in strengthening the hypothesis of our established theorems.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Chi-Ming Chen ◽  
W. Y. Sun

We introduce the notion of weaker(ϕ,φ)-contractive mapping in complete metric spaces and prove the periodic points and fixed points for this type of contraction. Our results generalize or improve many recent fixed point theorems in the literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Gonca Durmaz ◽  
Gülhan Mınak ◽  
Ishak Altun

In the recent paper (B. Samet, C. Vetro, and P. Vetro, Fixed point theorems forα-ψ-contractive type mappings, Nonlinear Analysis. Theory, Methods and Applications, 75 (2012), 2154-2165.), the authors introduced the concept ofα-admissible maps on metric spaces. Using this new concept, they presented some nice fixed point results. Also, they gave an existence theorem for integral equation to show the usability of their result. Then, many authors focused on this new concept and obtained a lot of fixed point results, which are used for existence theorems. In this paper, we not only extend some of the recent results about this direction but also generalize them. Then, we give some examples to show our results are proper extensions. Furthermore, we use our results to obtain the existence and uniqueness result for a solution of fourth order two-point boundary value problem.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Marin Borcut ◽  
Mădălina Păcurar ◽  
Vasile Berinde

We present new results on the existence and uniqueness of tripled fixed points for nonlinear mappings in partially ordered complete metric spaces that extend the results in the previous works: Berinde and Borcut, 2011, Borcut and Berinde, 2012, and Borcut, 2012. An example and an application to support our new results are also included in the paper.


Filomat ◽  
2017 ◽  
Vol 31 (14) ◽  
pp. 4587-4612 ◽  
Author(s):  
S.K. Padhan ◽  
Rao Jagannadha ◽  
Hemant Nashine ◽  
R.P. Agarwal

This paper extends and generalizes results of Mukheimer [(?,?,?)-contractive mappings in ordered partial b-metric spaces, J. Nonlinear Sci. Appl. 7(2014), 168-179]. A new concept of (?-?1-?2)-contractive mapping using two altering distance functions in ordered b-metric-like space is introduced and basic fixed point results have been studied. Useful examples are illustrated to justify the applicability and effectiveness of the results presented herein. As an application, the existence of solution of fourth-order two-point boundary value problems is discussed and rationalized by a numerical example.


2019 ◽  
Vol 6 (1) ◽  
pp. 1655870 ◽  
Author(s):  
Kanayo Stella Eke ◽  
Victoria Olusola Olisama ◽  
sheila Amina Bishop ◽  
Lishan Liu

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Maryam A. Alghamdi ◽  
Chi-Ming Chen ◽  
Erdal Karapınar

We introduce the notion of generalized weaker(α-ϕ-φ)-contractive mappings in the context of generalized metric space. We investigate the existence and uniqueness of fixed point of such mappings. Some consequences on existing fixed point theorems are also derived. The presented results generalize, unify, and improve several results in the literature.


2015 ◽  
Vol 2015 (1) ◽  
Author(s):  
Nawab Hussain ◽  
Vahid Parvaneh ◽  
Bessem Samet ◽  
Calogero Vetro

Author(s):  
Hayel N. Saleh ◽  
Mohammad Imdad ◽  
Salvatore Sessa ◽  
Ferdinando Di Martino

In this article, the concept of fuzzy $(\sigma,\mathcal{Z})$-contractive mapping has been introduced in fuzzy metric spaces which is an improvement over the corresponding concept recently introduced by Shukla et al. [Fuzzy Sets and system. 350 (2018) 85--94]. Thereafter, we utilized our newly introduced concept to prove some existence and uniqueness theorems in $\mathcal{M}$-complete fuzzy metric spaces. Our results extend and generalize the corresponding results of Shukla et al.. Moreover, an example is adopted to exhibit the utility of newly obtained results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hamed H. Alsulami ◽  
Selma Gülyaz ◽  
Erdal Karapınar ◽  
İncı M. Erhan

A class ofα-admissible contractions defined via altering distance functions is introduced. The existence and uniqueness conditions for fixed points of such maps on complete metric spaces are investigated and related fixed point theorems are presented. The results are reconsidered in the context of partially ordered metric spaces and applied to boundary value problems for differential equations with periodic boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document