Interaction in the systems Y2O3−Ln2O3 (Ln=Tb–Lu)

2021 ◽  
Vol 2021 (2) ◽  
pp. 72-78
Author(s):  
A. O. Makudera ◽  
◽  
S. M. Lakiza ◽  

Based on the analysis of literature data from experimentally constructed phase diagrams of Y2O3 − Ln2O3 systems (Ln = Tb − Lu), as well as temperatures of polymorphic transformations of rare earth oxides (REE), tentative phase diagrams of Y2O3 − Ln2O3 systems (Ln = Tb − Lu) were constructed in wide intervals of temperatures and concentrations. Prediction of the binary phase diagrams structure of yttria − yttrium subgroup lanthanides systems was carried out on the basis of three principles: 1. Since double systems are formed by lanthanide oxides of one (yttrium) subgroup, it is very likely that in such systems continuous solid solutions will be formed between the components. 2. Intermediate binary phases are not formed in these systems. 3. The formation of continuous solid solutions occurs with a decrease in the temperatures of phase transformations in the solid state to a minimum shifted towards a lower transformation temperature of the system component. The forecast of the Y2O3 – Ln2O3 systems phase diagrams structure, where Ln = Tb – Lu, indicates the complete solubility of the components in the liquid and solid states. Binary compounds in the considered systems are not predicted. Phase transformations in the solid solutions on the basis of polymorphic modifications X, H, A, B and C of lanthanide oxides cascade at high temperatures by the peritectoid mechanism. Below 1850 °C regions of solid solutions with cubic C-structure of REE oxides are formed in the whole range of concentrations in the systems. Key words: REE oxides, yttria, polymorphs of REE oxides, phase diagram.

1978 ◽  
Vol 9 (26) ◽  
Author(s):  
G.-Y. ADACHI ◽  
F. TONOMURA ◽  
Y. SHIBATA ◽  
J. SHIOKAWA

2020 ◽  
Vol 62 (12) ◽  
pp. 2412-2421
Author(s):  
V. V. Bakovets ◽  
I. P. Dolgovesova ◽  
T. D. Pivovarova ◽  
M. I. Rakhmanova

2002 ◽  
pp. 67-79
Author(s):  
Yu. B. Bolkhovityanov ◽  
A. S. Yaroshevich ◽  
M. A. Revenko ◽  
E. M. Trukhanov

Author(s):  
Tatiana P. Sushkova ◽  
Aleksandra V. Sheveljuhina ◽  
Galina V. Semenova ◽  
Elena Yu. Proskurina

Проведено исследование фазовых равновесий в тройной системе Sn–As–P в области высокой концентрации летучих компонентов. Методами рентгенофазового и дифференциального термического анализа изучены сплавы политермического разреза SnAs–P. Показано, что растворимость фосфора в моноарсениде олова в направлении этого разреза менее 0.05 мол.д. фосфора. Построена Т-х диаграмма политермического сечения SnAs–Р. Наличие на Т-х диаграмме горизонтали при температуре 827±2 К соответствует реализации в системе Sn–As–P нонвариантного перитектического равновесия L + (d) ↔ b + g , где (d), b и g – трехкомпонентные твердые растворы на основе As1-xPx, SnAs и SnP3 соответственно     REFERENCES Zhang W., Mao J., Li S., Chen Z., Guo Z. Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode // Am. Chem. Soc., 2017, v. 139(9), pp. 3316–3319. https://doi.org/10.1021/jacs.6b12185 Liu S., Zhang H., Xu L., Ma L., Chen X. Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries // of Power Sources, 2016, v. 304, pp. 346–353. https://doi.org/10.1016/j.jpowsour.2015.11.056 Zhang W., Pang W., Sencadas V., Guo Z. Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries // Joule, 2018, v. 2(8), pp. 1534–1547. https://doi.org/10.1016/j.joule.2018.04022 Lan D., Wang W., Shi L., Huang Y., Hu L., Li Q. Phase pure Sn4P3 nanotops by solution-liquid-solid growth for anode application in sodium ion batteries // Mater. Chem. A, 2017, v. 5, pp. 5791–5796. https://doi.org/10.1039/C6TA10685D Mogensen R., Maibach J., Naylor A. J., Younesi R. Capacity fading mechanism of tin phosphide anodes in sodium-ion batteries // Dalton Trans., 2018, v. 47, pp. 10752–10758. https://doi.org/10.1039/c8dt01068d Kamali A. R., Fray D. J. Tin-based materials as advanced anode materials for lithium ion batteries: a review // Adv. Mater. Sci., 2011, v. 27, pp. 14–24. URL: http://194.226.210.10/e-journals/RAMS/no12711/kamali.pdf Kovnir K. A., Kolen’ko Y. V., Baranov A. I., Neira I. S., Sobolev A. V., Yoshimura M., Presniakov I. A., Shevelkov A. V. Sn4As3 revisited: Solvothermal synthesis and crystal and electronic structure // Journal of Solid State Chemistry, 2009, v. 182(5), pp. 630–639. https://doi.org/10.1016/j.jssc.2008.12.007 Semenova G. V., Kononova E. Yu., Sushkova T. P. Polythermal section Sn4P3 – Sn4As3 // Russian J. of Inorganic Chemistry, 2013, v. 58 (9), pp. 1242–1245. https://doi.org/10.7868/S0044457X13090201 Sushkova T. P, Semenova G. V., Naumov A. V., Proskurina E. Yu. Solid solutions in the system Sn-As-P // Bulletin of VSU. Series: Chemistry. Biology. Pharmacy, 2017, v. 3, pp. 30–36. URL: http://www. vestnik.vsu.ru/pdf/chembio/2017/03/2017-03-05.pdf Semenova G. V., Sushkova T. P, Tarasova L. A., Proskurina E. Yu. Phase equilibria in a Sn-As-P system with a tin concentration less than 50 mol. % // Condensed Matter and Interphases, 2017, v. 19(3), pp. 408–416. https://doi.org/10.17308/kcmf.2017.19/218 Semenova G. V., Sushkova T. P., Zinchenko E. N., Yakunin S. V. Solubility of phosphorus in tin monoarsenide // Condensed Matter and Interphases, 2018, v. 20(4), pp. 644-649. https://doi.org/10.17308/kcmf.2018.20/639 Semenova G. V., Goncharov E. G. Solid Solutions Involving Elements of the Fifth Group. – Мoscow, MFTI Publ., 2000, 160 p. (in Russ.) Okamoto H. Phase diagrams for binary alloys, Second Edition. Materials Park, OH.: ASM International, 2010, 810 р. URL: https://www.asminternational. org/...pdf/c36eeb4e-d6ec-4804-b319-e5b0600ea65d Shirotani , Shiba S., Takemura K., Shimomura О., Yagi Т. Pressure-induced phase transitions of phosphorus-arsenic alloys // Physica B: Condensed Matter, 1993, v. 190, pp. 169–176.  https://doi.org/10.1016/0921-4526(93)90462-F Arita M., Kamo K. Measurement of vapor pressure of phosphorus over Sn-P alloys by dew point method // Jpn. Inst. Met., 1985, v. 26(4), pp. 242–250. https://doi.org/10.2320/matertrans1960.26.242 Zavrazhnov A. Yu., Semenova G. V., Proskurina E. Yu., Sushkova T. P. Phase diagram of the Sn–P system // Thermal Analysis and Calorimetry, 2018, v. 134(1), pp. 475–481. https://doi.orgh/10.1007/s10973-018-7123-0 Gokcen N. A. The As-Sn (Arsenic-Tin) system // Bulletin of alloy phase diagrams, 1990, v. 11(3), pp. 271–278. https://doi.org/10.1007/BF03029298


2008 ◽  
Vol 138 ◽  
pp. 29-42
Author(s):  
Steve C. Hansen ◽  
D. Kobertz

Numerous solid-state transformations occur in metal iodides. These transformations can be classified into three categories: polymorphic transformations, polytypic transitions and molecular solids. Many of the modifications of metal iodides involve metastable phases transforming into stable phases. Revisions to the In-I and Th-I phase diagrams are made based on data found in the literature.


Sign in / Sign up

Export Citation Format

Share Document