solid states
Recently Published Documents


TOTAL DOCUMENTS

424
(FIVE YEARS 87)

H-INDEX

36
(FIVE YEARS 8)

2022 ◽  
Vol 327 ◽  
pp. 11-25
Author(s):  
Guan Fei Xiao ◽  
Ju Fu Jiang ◽  
Ying Wang ◽  
Ying Zhe Liu ◽  
Ying Zhang ◽  
...  

Semi-solid processing combines the advantages of traditional forging and casting methods, so it has received much attention recently. However, the research on semi-solid behaviors of Nickel-based superalloys has been rarely reported. In order to investigate the behaviors of Nickel-based superalloy at solid and semi-solid states, oxidation experiments, isothermal treatment experiments and deformation experiments of GH4037 alloy were studied. Short-term oxidation experiments of GH4037 alloy were carried out at a solid temperature (1200 °C) and a semi-solid temperature (1360 °C). The results indicated that the oxides formed at 1200 °C were mainly composed of TiO2, Cr2O3 and a small amount of spinels NiCr2O4, while the oxides formed at 1360 °C consisted of the spinels of NiCr2O4, NiWO4 and NiMoO4 besides TiO2 and Cr2O3. Microstructure evolution of GH4037 alloy after semi-solid isothermal treatment at 1370 °C and 1380 °C was studied. The results indicated that semi-solid microstructures consisted of equiaxed solid grains and liquid phases. The average grains size and shape factor of solid grains were affected by melting mechanism and grain growth mechanism. Compression behaviors of GH4037 alloy after compressed at 1200 °C and 1360 °C were investigated. The results indicated that the flow stress of 1360 °C decreased significantly compared to that of 1200 °C. The deformation zones in the specimens were divided into three parts: the difficult deformation zone, the large deformation zone, and the free deformation zone. At 1200 °C, the deformation mechanism was plastic deformation mechanism. At 1360 °C, sliding between solid particles (SS), liquid flow (LF), flow of liquid incorporating solid particles (FLS), plastic deformation of solid particles (PDS) coexisted in the compression specimen.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 250
Author(s):  
Mateusz Woźny ◽  
Adam Mames ◽  
Tomasz Ratajczyk

Since the first preparation of triptycene, great progress has been made with respect to its synthesis and the understanding of its properties. Interest in triptycene-based systems is intense; in recent years, advances in the synthetic methodology and properties of new triptycenes have been reported by researchers from various fields of science. Here, an account of these new developments is given and placed in reference to earlier pivotal works that underpin the field. First, we discuss new approaches to the synthesis of new triptycenes. Progress in the regioselective synthesis of sterically demanding systems is discussed. The application of triptycenes in catalysis is also presented. Next, progress in the understanding of the relations between triptycene structures and their properties is discussed. The unique properties of triptycenes in the liquid and solid states are elaborated. Unique interactions, which involve triptycene molecular scaffolds, are presented. Molecular interactions within a triptycene unit, as well as between triptycenes or triptycenes and other molecules, are also evaluated. In particular, the summary of the synthesis and useful features will be helpful to researchers who are using triptycenes as building blocks in the chemical and materials sciences.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1885
Author(s):  
Shigeyuki Yamada ◽  
Akito Nishizawa ◽  
Kazuki Kobayashi ◽  
Keigo Yoshida ◽  
Masato Morita ◽  
...  

Dual-state emissive (DSE) luminophores, which can luminesce both in solution and in solid states, have recently attracted significant attention because of their broad applications. However, their development is difficult due to the difference in molecular design between solution- and solid-state luminophores. In this study, DSE luminophores based on unsymmetrical hexafluorocyclopentene-linked twisted π-conjugated structures carrying various substituents to tune the electron-density were designed and synthesized in a single-step reaction from heptafluorocyclopentene or perfluoro-1,2-diphenylcyclopentene derivatives. The twisted π-conjugated luminophores exhibited absorption in the UV region at approximately 330 nm, along with several signals in the high-energy region. Upon irradiating the luminophore solution (wavelength 330 nm), light-green to yellow photoluminescence (PL) was observed in the range of 422–471 nm with high PL efficiency. Theoretical calculations revealed that excitation from ground to excited states altered the structural shape of the luminophores from twisted to planar, leading to red-shifted PL and high PL efficiency (ΦPL). The intense blue PL exhibited by the luminophores in the crystalline state was attributed to their twisted molecular structures that suppressed non-radiative deactivation via the effective blocking of π/π stacking interactions.


Author(s):  
G. J. Кабо ◽  
L. A. Kabo ◽  
L. S. Karpushenkava ◽  
A. V. Blokhin

Objectives. The increased use of unmanned aerial vehicles necessitates the search for jet fuels based on hydrocarbon materials with high energy intensity and physical density. The purpose of the work was to analyze the influence of various factors on the mass energy intensity of hydrocarbons. This analysis is required to substantiate the algorithm for locating energy-intensive CnHm structures.Methods. Combustion energy was calculated using additive procedures. The calculations were performed using Microsoft Excel.Results. During the analysis of the mass energy intensity of CnHm hydrocarbons, the m/n ratio was discovered to be the decisive factor for achieving high values of the mass energy intensity of hydrocarbons. The energy intensity decreases when moving from alicyclic to cyclic hydrocarbons, and this decrease is not compensated by the production of strain energy. An additive scheme that allows the molar volume of hydrocarbons to be predicted with sufficient accuracy is proposed for calculating the volumetric enthalpies of combustion.Conclusions. According to the thermodynamic analysis, n-alkanes have the highest mass energy intensities. The technology for extracting n-alkanes from oil fractions is well developed, and a decrease in the hydrogen content in the fuel results in a decrease in the mass energy intensity. It appears improbable that the mass and volumetric energy intensities of hydrocarbons seem will reach their maximum values simultaneously. Hydrocarbons that have a high m/n value, 2, 3, 4, 5, 6-membered rings, and phenyl fragments may have relatively high mass and volumetric energy intensities at the same time.


2021 ◽  
Author(s):  
Zhong-Ning Chen ◽  
Ya-Zi Huang ◽  
Jin-Yun Wang ◽  
Zhu Jiao ◽  
Pei Xie

Abstract Through elaborate ligand design to create knotted structures with specific topologies is a major challenge for chemists. In this work, the self-assembly between U-shape 3,6-di-tert-butyl-1,8-diethynyl-9H-carbazole (H2L) and Au+ through gold(I)-bis(acetylide) linkages under π-bonded Cu+ template gives rise to complex 1 with two interlocked metallostrands as well as complexes 3 (n = 3) and 4 (n = 4) with [(AuL)n]n- metallostrands showing trefoil knot topology. Upon incorporating two [Au(dppb)Au]2+ (dppb = Ph2P(CH2)4PPh2) moieties through bis(Au-acetylide) coordination bonds, the interlocked structure (1) is fully closed to form a figure-eight knotted structure in complex 2. The folding and threading of metallocyclic strings are directed by Cu+, which are π-ligated to two or three acetylides to generate double-folding or triple-folding cross points. Complexes 1-4 show intense phosphorescence in both solutions and solid states at ambient temperature, originating from admixture of metal centered 3[d®p/s], 3IL (intraligand), and 3[p (L) ® s/p (Au/Cu)] 3LMCT triplet states.


2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Stefan Luding ◽  
Yimin Jiang ◽  
Mario Liu

Abstract Jamming/un-jamming, the transition between solid- and fluid-like behavior in granular matter, is an ubiquitous phenomenon in need of a sound understanding. As argued here, in addition to the usual un-jamming by vanishing pressure due to a decrease of density, there is also yield (plastic rearrangements and un-jamming that occur) if, e.g., for given pressure, the shear stress becomes too large. Similar to the van der Waals transition between vapor and water, or the critical current in superconductors, we believe that one mechanism causing yield is by the loss of the energy’s convexity (causing irreversible re-arrangements of the micro-structure, either locally or globally). We focus on this mechanism in the context of granular solid hydrodynamics (GSH), generalized for very soft materials, i.e., large elastic deformations, employing it in an over-simplified (bottom-up) fashion by setting as many parameters as possible to constant. Also, we complemented/completed GSH by using various insights/observations from particle simulations and calibrating some of the theoretical parameters—both continuum and particle points of view are reviewed in the context of the research developments during the last few years. Any other energy-based elastic-plastic theory that is properly calibrated (top-down), by experimental or numerical data, would describe granular solids. But only if it would cover granular gas, fluid, and solid states simultaneously (as GSH does) could it follow the system transitions and evolution through all states into un-jammed, possibly dynamic/collisional states—and back to elastically stable ones. We show how the un-jamming dynamics starts off, unfolds, develops, and ends. We follow the system through various deformation modes: transitions, yielding, un-jamming and jamming, both analytically and numerically and bring together the material point continuum model with particle simulations, quantitatively. Graphic abstract


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
R. Gu ◽  
T. Perrault ◽  
V. Juvé ◽  
G. Vaudel ◽  
M. Weis ◽  
...  
Keyword(s):  

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1094
Author(s):  
Songhua Chen ◽  
Yongqi Liu ◽  
Meiyun He ◽  
Jianhua Huang

An electron-donating−accepting (D−A) molecule, namely, 4-(1-(4-(9H-carbazol-9-yl)phenyl)-1H-1,2,3-triazol-4-yl)benzo[c][1,2,5]thiadiazole (BT-SCC) containing carbazole as the donor moiety and benzothiadiazole as the acceptor moiety is prepared. Single-crystal X-ray structure analysis elucidated the multiple intermolecular interactions, such as hydrogen bonds, CH…π, and π…π interplays. Interestingly, the aggregation-induced emission phenomenon is observed for BT-SCC featured with enhanced fluorescent quantum yield from diluted solution of CH2Cl2 (Φ = ca. 0.1) to CH2Cl2/hexane mixed solutions or solid states (Φ = ca. 0.8). Finally, aggregates of BT-SCC are obtained through precipitating from hot and saturated solutions or solvent-vapor methods and the aggregating morphologies could be easily controlled through different preparation methods. Fabulous cube-like micro-crystals and nanospherical structures are obtained, which is established by the synergistic effects of the multiple non-covalent interactions, endowing potential utility in the field of optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document