scholarly journals Политермический разрез SnAs–P тройной системы Sn–As–P

Author(s):  
Tatiana P. Sushkova ◽  
Aleksandra V. Sheveljuhina ◽  
Galina V. Semenova ◽  
Elena Yu. Proskurina

Проведено исследование фазовых равновесий в тройной системе Sn–As–P в области высокой концентрации летучих компонентов. Методами рентгенофазового и дифференциального термического анализа изучены сплавы политермического разреза SnAs–P. Показано, что растворимость фосфора в моноарсениде олова в направлении этого разреза менее 0.05 мол.д. фосфора. Построена Т-х диаграмма политермического сечения SnAs–Р. Наличие на Т-х диаграмме горизонтали при температуре 827±2 К соответствует реализации в системе Sn–As–P нонвариантного перитектического равновесия L + (d) ↔ b + g , где (d), b и g – трехкомпонентные твердые растворы на основе As1-xPx, SnAs и SnP3 соответственно     REFERENCES Zhang W., Mao J., Li S., Chen Z., Guo Z. Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode // Am. Chem. Soc., 2017, v. 139(9), pp. 3316–3319. https://doi.org/10.1021/jacs.6b12185 Liu S., Zhang H., Xu L., Ma L., Chen X. Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries // of Power Sources, 2016, v. 304, pp. 346–353. https://doi.org/10.1016/j.jpowsour.2015.11.056 Zhang W., Pang W., Sencadas V., Guo Z. Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries // Joule, 2018, v. 2(8), pp. 1534–1547. https://doi.org/10.1016/j.joule.2018.04022 Lan D., Wang W., Shi L., Huang Y., Hu L., Li Q. Phase pure Sn4P3 nanotops by solution-liquid-solid growth for anode application in sodium ion batteries // Mater. Chem. A, 2017, v. 5, pp. 5791–5796. https://doi.org/10.1039/C6TA10685D Mogensen R., Maibach J., Naylor A. J., Younesi R. Capacity fading mechanism of tin phosphide anodes in sodium-ion batteries // Dalton Trans., 2018, v. 47, pp. 10752–10758. https://doi.org/10.1039/c8dt01068d Kamali A. R., Fray D. J. Tin-based materials as advanced anode materials for lithium ion batteries: a review // Adv. Mater. Sci., 2011, v. 27, pp. 14–24. URL: http://194.226.210.10/e-journals/RAMS/no12711/kamali.pdf Kovnir K. A., Kolen’ko Y. V., Baranov A. I., Neira I. S., Sobolev A. V., Yoshimura M., Presniakov I. A., Shevelkov A. V. Sn4As3 revisited: Solvothermal synthesis and crystal and electronic structure // Journal of Solid State Chemistry, 2009, v. 182(5), pp. 630–639. https://doi.org/10.1016/j.jssc.2008.12.007 Semenova G. V., Kononova E. Yu., Sushkova T. P. Polythermal section Sn4P3 – Sn4As3 // Russian J. of Inorganic Chemistry, 2013, v. 58 (9), pp. 1242–1245. https://doi.org/10.7868/S0044457X13090201 Sushkova T. P, Semenova G. V., Naumov A. V., Proskurina E. Yu. Solid solutions in the system Sn-As-P // Bulletin of VSU. Series: Chemistry. Biology. Pharmacy, 2017, v. 3, pp. 30–36. URL: http://www. vestnik.vsu.ru/pdf/chembio/2017/03/2017-03-05.pdf Semenova G. V., Sushkova T. P, Tarasova L. A., Proskurina E. Yu. Phase equilibria in a Sn-As-P system with a tin concentration less than 50 mol. % // Condensed Matter and Interphases, 2017, v. 19(3), pp. 408–416. https://doi.org/10.17308/kcmf.2017.19/218 Semenova G. V., Sushkova T. P., Zinchenko E. N., Yakunin S. V. Solubility of phosphorus in tin monoarsenide // Condensed Matter and Interphases, 2018, v. 20(4), pp. 644-649. https://doi.org/10.17308/kcmf.2018.20/639 Semenova G. V., Goncharov E. G. Solid Solutions Involving Elements of the Fifth Group. – Мoscow, MFTI Publ., 2000, 160 p. (in Russ.) Okamoto H. Phase diagrams for binary alloys, Second Edition. Materials Park, OH.: ASM International, 2010, 810 р. URL: https://www.asminternational. org/...pdf/c36eeb4e-d6ec-4804-b319-e5b0600ea65d Shirotani , Shiba S., Takemura K., Shimomura О., Yagi Т. Pressure-induced phase transitions of phosphorus-arsenic alloys // Physica B: Condensed Matter, 1993, v. 190, pp. 169–176.  https://doi.org/10.1016/0921-4526(93)90462-F Arita M., Kamo K. Measurement of vapor pressure of phosphorus over Sn-P alloys by dew point method // Jpn. Inst. Met., 1985, v. 26(4), pp. 242–250. https://doi.org/10.2320/matertrans1960.26.242 Zavrazhnov A. Yu., Semenova G. V., Proskurina E. Yu., Sushkova T. P. Phase diagram of the Sn–P system // Thermal Analysis and Calorimetry, 2018, v. 134(1), pp. 475–481. https://doi.orgh/10.1007/s10973-018-7123-0 Gokcen N. A. The As-Sn (Arsenic-Tin) system // Bulletin of alloy phase diagrams, 1990, v. 11(3), pp. 271–278. https://doi.org/10.1007/BF03029298

Nanoscale ◽  
2021 ◽  
Author(s):  
Lihong Xu ◽  
Xiaochuan Chen ◽  
Wenti Guo ◽  
Lingxing Zeng ◽  
Tao Yang ◽  
...  

To construct anode materials for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) with high energy, and long lifespan is significant and still challenging. Here, sulfur-defective vanadium sulfide/carbon fibers composite (D-V5S8/CNFs)...


Author(s):  
Jiefei Liu ◽  
Kangshou Lin ◽  
Yu Zhou ◽  
Yu Zhou ◽  
Xianhua Hou ◽  
...  

The sodium super ionic conductor (NASICON) materials are considered as the attractive cathode in sodium-ion batteries. Although the three-electron reactions in Na3MnTi(PO4)3 have greatly enhanced the capacity of NASICON-structure materials,...


Author(s):  
Yuhan Wu ◽  
Chenglin Zhang ◽  
Huaping Zhao ◽  
Yong Lei

In next-generation rechargeable batteries, sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have been considered as attractive alternatives to lithium-ion batteries due to their cost competitiveness. Anodes with complicated electrochemical mechanisms...


Author(s):  
Indeok Lee ◽  
Gwangeon Oh ◽  
Seulgi Lee ◽  
Tae-Yeon Yu ◽  
Muhammad Hilmy Alfaruqi ◽  
...  

2016 ◽  
Vol 6 (21) ◽  
pp. 1601037 ◽  
Author(s):  
Hong Gao ◽  
Tengfei Zhou ◽  
Yang Zheng ◽  
Yuqing Liu ◽  
Jun Chen ◽  
...  

2018 ◽  
Vol 47 (31) ◽  
pp. 10752-10758 ◽  
Author(s):  
Ronnie Mogensen ◽  
Julia Maibach ◽  
Andrew J. Naylor ◽  
Reza Younesi

Tin phosphide (Sn4P3) is here investigated as an anode material in half-cell, symmetrical, and full-cell sodium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document