Melting temperatures of the AIBIIICVI2-type (AI-Cu, Ag; BIII-Al, Ga, In; CVI-S, Se) compounds and phase diagrams of their solid solutions

1985 ◽  
Vol 93 ◽  
pp. 685-688 ◽  
Author(s):  
I.V. Bodnar ◽  
A.P. Bologa ◽  
B.V. Korzun ◽  
L.A. Makovetskaya
2002 ◽  
pp. 67-79
Author(s):  
Yu. B. Bolkhovityanov ◽  
A. S. Yaroshevich ◽  
M. A. Revenko ◽  
E. M. Trukhanov

Author(s):  
Tatiana P. Sushkova ◽  
Aleksandra V. Sheveljuhina ◽  
Galina V. Semenova ◽  
Elena Yu. Proskurina

Проведено исследование фазовых равновесий в тройной системе Sn–As–P в области высокой концентрации летучих компонентов. Методами рентгенофазового и дифференциального термического анализа изучены сплавы политермического разреза SnAs–P. Показано, что растворимость фосфора в моноарсениде олова в направлении этого разреза менее 0.05 мол.д. фосфора. Построена Т-х диаграмма политермического сечения SnAs–Р. Наличие на Т-х диаграмме горизонтали при температуре 827±2 К соответствует реализации в системе Sn–As–P нонвариантного перитектического равновесия L + (d) ↔ b + g , где (d), b и g – трехкомпонентные твердые растворы на основе As1-xPx, SnAs и SnP3 соответственно     REFERENCES Zhang W., Mao J., Li S., Chen Z., Guo Z. Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode // Am. Chem. Soc., 2017, v. 139(9), pp. 3316–3319. https://doi.org/10.1021/jacs.6b12185 Liu S., Zhang H., Xu L., Ma L., Chen X. Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries // of Power Sources, 2016, v. 304, pp. 346–353. https://doi.org/10.1016/j.jpowsour.2015.11.056 Zhang W., Pang W., Sencadas V., Guo Z. Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries // Joule, 2018, v. 2(8), pp. 1534–1547. https://doi.org/10.1016/j.joule.2018.04022 Lan D., Wang W., Shi L., Huang Y., Hu L., Li Q. Phase pure Sn4P3 nanotops by solution-liquid-solid growth for anode application in sodium ion batteries // Mater. Chem. A, 2017, v. 5, pp. 5791–5796. https://doi.org/10.1039/C6TA10685D Mogensen R., Maibach J., Naylor A. J., Younesi R. Capacity fading mechanism of tin phosphide anodes in sodium-ion batteries // Dalton Trans., 2018, v. 47, pp. 10752–10758. https://doi.org/10.1039/c8dt01068d Kamali A. R., Fray D. J. Tin-based materials as advanced anode materials for lithium ion batteries: a review // Adv. Mater. Sci., 2011, v. 27, pp. 14–24. URL: http://194.226.210.10/e-journals/RAMS/no12711/kamali.pdf Kovnir K. A., Kolen’ko Y. V., Baranov A. I., Neira I. S., Sobolev A. V., Yoshimura M., Presniakov I. A., Shevelkov A. V. Sn4As3 revisited: Solvothermal synthesis and crystal and electronic structure // Journal of Solid State Chemistry, 2009, v. 182(5), pp. 630–639. https://doi.org/10.1016/j.jssc.2008.12.007 Semenova G. V., Kononova E. Yu., Sushkova T. P. Polythermal section Sn4P3 – Sn4As3 // Russian J. of Inorganic Chemistry, 2013, v. 58 (9), pp. 1242–1245. https://doi.org/10.7868/S0044457X13090201 Sushkova T. P, Semenova G. V., Naumov A. V., Proskurina E. Yu. Solid solutions in the system Sn-As-P // Bulletin of VSU. Series: Chemistry. Biology. Pharmacy, 2017, v. 3, pp. 30–36. URL: http://www. vestnik.vsu.ru/pdf/chembio/2017/03/2017-03-05.pdf Semenova G. V., Sushkova T. P, Tarasova L. A., Proskurina E. Yu. Phase equilibria in a Sn-As-P system with a tin concentration less than 50 mol. % // Condensed Matter and Interphases, 2017, v. 19(3), pp. 408–416. https://doi.org/10.17308/kcmf.2017.19/218 Semenova G. V., Sushkova T. P., Zinchenko E. N., Yakunin S. V. Solubility of phosphorus in tin monoarsenide // Condensed Matter and Interphases, 2018, v. 20(4), pp. 644-649. https://doi.org/10.17308/kcmf.2018.20/639 Semenova G. V., Goncharov E. G. Solid Solutions Involving Elements of the Fifth Group. – Мoscow, MFTI Publ., 2000, 160 p. (in Russ.) Okamoto H. Phase diagrams for binary alloys, Second Edition. Materials Park, OH.: ASM International, 2010, 810 р. URL: https://www.asminternational. org/...pdf/c36eeb4e-d6ec-4804-b319-e5b0600ea65d Shirotani , Shiba S., Takemura K., Shimomura О., Yagi Т. Pressure-induced phase transitions of phosphorus-arsenic alloys // Physica B: Condensed Matter, 1993, v. 190, pp. 169–176.  https://doi.org/10.1016/0921-4526(93)90462-F Arita M., Kamo K. Measurement of vapor pressure of phosphorus over Sn-P alloys by dew point method // Jpn. Inst. Met., 1985, v. 26(4), pp. 242–250. https://doi.org/10.2320/matertrans1960.26.242 Zavrazhnov A. Yu., Semenova G. V., Proskurina E. Yu., Sushkova T. P. Phase diagram of the Sn–P system // Thermal Analysis and Calorimetry, 2018, v. 134(1), pp. 475–481. https://doi.orgh/10.1007/s10973-018-7123-0 Gokcen N. A. The As-Sn (Arsenic-Tin) system // Bulletin of alloy phase diagrams, 1990, v. 11(3), pp. 271–278. https://doi.org/10.1007/BF03029298


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2728 ◽  
Author(s):  
Sergey V. Ushakov ◽  
Alexandra Navrotsky ◽  
Qi-Jun Hong ◽  
Axel van de Walle

Among transition metal carbides and nitrides, zirconium, and hafnium compounds are the most stable and have the highest melting temperatures. Here we review published data on phases and phase equilibria in Hf-Zr-C-N-O system, from experiment and ab initio computations with focus on rocksalt Zr and Hf carbides and nitrides, their solid solutions and oxygen solubility limits. The systematic experimental studies on phase equilibria and thermodynamics were performed mainly 40–60 years ago, mostly for binary systems of Zr and Hf with C and N. Since then, synthesis of several oxynitrides was reported in the fluorite-derivative type of structures, of orthorhombic and cubic higher nitrides Zr3N4 and Hf3N4. An ever-increasing stream of data is provided by ab initio computations, and one of the testable predictions is that the rocksalt HfC0.75N0.22 phase would have the highest known melting temperature. Experimental data on melting temperatures of hafnium carbonitrides are absent, but minimum in heat capacity and maximum in hardness were reported for Hf(C,N) solid solutions. New methods, such as electrical pulse heating and laser melting, can fill the gaps in experimental data and validate ab initio predictions.


1977 ◽  
Vol 32 (1) ◽  
pp. 98-100
Author(s):  
M. S. Dhillon

Abstract Solid - liquid equilibria for o-phenylenediamine + resorcinol, m-phenylenediamine + pyrocatechol, + resorcinol and p-phenylenediamine + pyrocatechol, + resorcinol have been studied by the thaw-melt method. The types and melting temperatures of the complexes formed in theses mixtures were ascertained from the phase diagrams.


1997 ◽  
Vol 12 (10) ◽  
pp. 2584-2588 ◽  
Author(s):  
M. A. Petrova ◽  
G. A. Mikirticheva ◽  
A. S. Novikova ◽  
V. F. Popova

Phase relations in two binary systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4 have been studied and phase diagrams for them have been constructed. Based on the data of x-ray phase and crystal-optical analyses, the formation of a continuous series of solid solutions with spinel structure between the terminal members of the systems studied has been established. In the MgAl2O4–ZnAl2O4 system the solid solution is stable in the range from room temperature to melting temperature. In the MgAl2O4–Mg2TiO4 system the solid solution decomposes below 1380 °C, yielding the formation of limited regions of homogeneity on the basis of MgAlM2O4 and Mg2+2δ Ti1–δO4. Decomposition of the solid solution is accompanied by crystallization of MgTiO3.


Calphad ◽  
2019 ◽  
Vol 66 ◽  
pp. 101643 ◽  
Author(s):  
N.R. Mediukh ◽  
V.I. Ivashchenko ◽  
P.E.A. Turchi ◽  
V.I. Shevchenko ◽  
Jerzy Leszczynski ◽  
...  

1995 ◽  
Vol 53 (1) ◽  
pp. 23-37 ◽  
Author(s):  
V. M. Ishchuk ◽  
N. I. Ivashkova ◽  
S. V. Matveev ◽  
V. L. Sobolev ◽  
N. A. Spiridonov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document