scholarly journals Mixed-integer linear programming mathematical model for founding the optimal dispatch plan of Ukrainian thermal power plants’ units and hydro pumping storages stations’ units for balancing daily load profile of power system of Ukraine

2020 ◽  
Vol 2020 (1) ◽  
pp. 14-23
Author(s):  
S.V. Shulzhenko ◽  
◽  
O.I., Turutikov ◽  
N.P. Ivanenko ◽  
◽  
...  
2019 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
José Manuel Velarde ◽  
Susana García ◽  
Mauricio López ◽  
Alfredo Bueno-Solano

This work considers the application of a mathematical model using mixed-integer linear programming for the vehicle routing problem. The model aims at establishing the distribution routes departing from a distribution center to each customer in order to reduce the transport cost associated with these routes. The study considers the use of a fleet of different capacities in the distribution network, which presents the special characteristic of a star network and which must meet different efficiency criteria, such as the fulfillment of each customer’s demand, the vehicle carrying capacity, work schedule, and sustainable use of resources. The intention is to find the amount of equipment suitable to satisfy the demand, thus improving the level of customer service, optimizing the use of both human and economic resources in the distribution area, and leveraging maximum vehicle capacity usage. The MILP mixed-integer linear programming mathematical model of the case study is presented, as well as the corresponding numerical study.


2021 ◽  
Author(s):  
Flávio Leite Loução Junior ◽  
Marlon Sproesser Mathias ◽  
Claudia Sagastizábal ◽  
Luiz-Rafael Santos ◽  
Francisco Nogueira Calmon Sobral

In partnership with CCEE, CEPEL and RADIX as industrial partners, in 2021 the study group focused on the dynamics of hourly prices when industrial consumers are demand responsive, as a follow-up of the industrial problem tackled in 2018 and 2019, on ``Day-ahead pricing mechanisms for hydro-thermal power systems''. Demand response is currently being tested by the Brazilian independent system operator and by the trading chamber, ONS. The program considers reductions of consumption of some clients as an alternative to dispatching thermal power plants out of the merit order. The day-ahead problem of finding optimal dispatch and prices for the Brazilian system is modelled as a mixed-integer linear programming problem, with non-convexities related to fixed costs and minimal generation requirements for some thermal power plants. The work focuses on the point of view of an individual hydro-power generator, to determine business opportunities related to adhering to a demand response program.


2019 ◽  
Vol 30 (3) ◽  
pp. 628-646 ◽  
Author(s):  
K.E.K. Vimal ◽  
Sonu Rajak ◽  
Jayakrishna Kandasamy

PurposeThe purpose of this paper is to propose a mathematical model for the design of a circular production system (CPS) for an Indian manufacturing organization participating in a symbiotic network.Design/methodology/approachA multi-objective mixed integer linear programming is used to model the network for quantifying the economic benefits. The data set collected from the case organization is used. The GAMS optimization package is used to simulate the model.FindingsThe model is able to compute the economic benefit achieved through circular operations in the case organization. The flow of different items through the network is also obtained.Research limitations/implicationsThe data set of the single organization in the symbiotic network is used to validate the proposed mathematical model. Further research can be done considering the all the organizations in the considered symbiotic network.Practical implicationsThis paper will help the authors to better understand the role of sustainable supply chains in a circular economy model especially in energy and materials intensive industries.Originality/valueThis study has uniquely utilized a multi-objective mixed-integer linear programming approach for the analysis of variables in CPSs and the corresponding economic benefits.


Sign in / Sign up

Export Citation Format

Share Document