scholarly journals ENVIRONMENT DENSITY OF A GIANT RADIO STRUCTURE FOR GALAXIES AND QUASARS WITH STEEP RADIO SPECTRA

2021 ◽  
Vol 26 (2) ◽  
pp. 165-172
Author(s):  
A. P. Miroshnichenko ◽  

Purpose: Estimate of the environment density of giant (with the linear size of about megaparsec) radio structures for galaxies and quasars with steep low-frequency spectra taken from the UTR-2 catalogue. Study of the cosmological evolution of environment density of giant radio sources. Determination of dependence of contribution of radio lobes into the emission of giant sources with respect to their environment density. Design/methodology/approach: We use the sample of sources from the UTR-2 catalogue of extragalactic sources to estimate the environment density for giant sources with steep low-frequency spectra. The selection criteria for the examined objects are the following: 1) the spectral index value is equal or larger than 1; 2) the fl ux density of emission at the frequency of 25 MHz is larger than 10 Jy; 3) the sample sources are optically identifi ed. The value of environment density of examined sources is obtained with the assumption of equality of source jet luminosity (at the synchrotron mechanism of radio emission) and its corresponding kinetic luminosity. The analysis of the estimates of environment densities is made for different classes of the sample objects (for galaxies and quasars with linear steep spectra and with break steep spectra). Findings: The estimates of environment density have been derived for giant radio structures formed by the jets of sources with steep spectrum from the UTR-2 catalogue. On the average, the environment density for the quasar structure (~ 10-28 g/sm3) is lesser than the one for the galaxies (~ 10-27 g/sm3 to ~ 10-26 g/sm3). The larger jet environment density is typical for the galaxies and quasars with the break steep spectra than for those with the linear steep spectra. The inverse power relation of the jet environment density and the source redshift (the cosmological evolution of the jet environment density) has been derived. The contribution of jet-related radio lobes into the emission of sources displays the inverse power relation for the environment density of the corresponding radio structures. Conclusions: The mean values of obtained estimates of environment density of giant jets of radio sources with steep low-frequency spectra indicate the lesser environment density of quasar jets than that for the galaxy jets. Giant radio sources with steep low-frequency spectrum (especially, with break steep spectrum) reveal considerable evolution of environment density of jets. The larger contribution of radio lobes (jets) into the emission of sources corresponds to the lesser environment density of sources taken from the UTR-2 catalogue. It can be due to propagation of jets (surrounded by radio lobes) from powerful radio sources to distances of about megaparsec, until the balance of source’s environment density and extragalactic environment density is reached. Key words: steep low-frequency radio spectrum; giant radio structure; jets; radio lobes; galaxies; quasars; environment density

2014 ◽  
Vol 11 (S308) ◽  
pp. 631-635
Author(s):  
Alla P. Miroshnichenko

AbstractWe consider evolution properties of galaxies and quasars with steep radio spectrum at the decametre band from the UTR-2 catalogue. The ratios of source's monochromatic luminosities at the decametre and high-frequency bands display the dependence on the redshift, linear size, characteristic age of examined objects. At that, the mean values of corresponding ratios for considered galaxies and quasars have enough close quantities,testifying on the unified model of sources. We analyse obtained relations for two types of steep-spectrum sources (with linear steep spectrum (S) and low-frequency steepness after a break (C+)) from the UTR-2 catalogue.


1996 ◽  
Vol 175 ◽  
pp. 569-570
Author(s):  
R.D. Dagkesamanskii

Cosmological evolution of synchrotron spectra of the powerful extragalactic radio sources was studied by many authors. Some indications of such an evolution had been found firstly by analysis of ‘spectral index - flux density’ (α – S) relation for the sample of relatively strong radio sources. Later Gopal-Krishna and Steppe extended the analysis to weaker sources and found that the slope of αmed(S) curve changes dramatically at intermediate flux densities. Gopal-Krishna and Steppe pointed out that the maxima of the αmed(S) curve and of differential source counts are at almost the same flux density ranges (see, Fig. 2). It has to be noticed that the all mentioned results were obtained using the low-frequency spectral indices and on the basis of low frequency samples.


1972 ◽  
Vol 44 ◽  
pp. 224-224 ◽  
Author(s):  
G. D. Nicolson

Results of a three-year investigation into the variability of 55 Parkes sources at 13 cm are presented. Thirty-six of the sources comprise a complete sample of QSS with fluxes exceeding 2 flux units. The remaining sources include most other known or likely variables stronger than 2 flux units. The relationship between spectra and variability in QSS is investigated and it is confirmed that variables generally have flat low frequency spectra. A possible relationship between redshift and specific types of intensity variations is considered. Limits on the secular change in the intensity of non-variable QSS are set and are generally found to be ± 1.5% p.a. at 13 cm. Results for the remaining 19 sources are discussed and some preliminary findings of an extension patrol to include weaker sources in the range 1-2 flux units are given.


Astrophysics ◽  
1970 ◽  
Vol 4 (4) ◽  
pp. 252-255
Author(s):  
A. M. Aslanyan ◽  
V. G. Malumyan ◽  
V. A. Sanamyan

1984 ◽  
Vol 89 ◽  
pp. 323 ◽  
Author(s):  
L. Gregorini ◽  
F. Mantovani ◽  
A. Eckart ◽  
P. Biermann ◽  
A. Witzel ◽  
...  

2019 ◽  
Vol 631 ◽  
pp. A176 ◽  
Author(s):  
A. Capetti ◽  
R. D. Baldi ◽  
M. Brienza ◽  
R. Morganti ◽  
G. Giovannini

Using the alternative data release of the TIFR GMRT Sky Survey (TGSS), we studied the low-frequency properties of FR 0 radio galaxies, the large population of compact radio sources associated with red massive early-type galaxies revealed by surveys at 1.4 GHz. We considered TGSS observations from FR0CAT, a sample formed by 104 FR 0s at z <  0.05: all but one of them are covered by the TGSS, and 43 of them are detected above a 5σ limit of 17.5 mJy. No extended emission has been detected around the FR 0s, corresponding to a luminosity limit of ≲4 × 1023 W Hz−1 over an area of 100 kpc × 100 kpc. All but eight FR 0s have a flat or inverted spectral shape (α <  0.5) between 150 MHz and 1.4 GHz: this spectral behavior confirms the general paucity of optically thin extended emission within the TGSS beam, as is expected for their compact 1.4 GHz morphology. Data at 5 GHz were used to build their radio spectra, which are also generally flat at higher frequencies. By focusing on a sub-sample of FR 0s with flux density > 50 mJy at 1.4 GHz, we found that ∼75% of them have a convex spectrum, but with a smaller curvature than the more powerful gigahertz peaked-spectrum sources (GPS). The typical FR 0s radio spectrum is better described by a gradual steepening toward high frequencies, rather than to a transition from an optically-thick to an optically-thin regime, possibly observed in only ∼15% of the sample.


2002 ◽  
Vol 199 ◽  
pp. 231-232
Author(s):  
N. Tsvyk

In this work we explain the integrated spectrum measurements (Braude et.al.,1978—1995) in terms of the synchrotron theory and the the recent measurements of radio fine structure in different classes of sources (Carilli et.al.,1991). This provides a new method of investigating extragalactic radio sources


Sign in / Sign up

Export Citation Format

Share Document