One-Photon Scattering by N-Atom System: Application to One- and Two-Mode Resonator

2014 ◽  
Vol 59 (7) ◽  
pp. 677-688
Author(s):  
A.S. Sizhuk ◽  
2012 ◽  
Vol 10 (s2) ◽  
pp. S22701-322705
Author(s):  
Luling Jin Luling Jin ◽  
Mihai Macovei Mihai Macovei ◽  
Jorg Evers Jorg Evers

2020 ◽  
Vol 3 (2) ◽  
pp. 182-186
Author(s):  
Lisnayani Silalahi ◽  
Anita Sindar

Data security and confidentiality is currently a very important issue and continues to grow. Several cases concerning data security are now a job that requires handling and security costs that are so large. To maintain the security and confidentiality of messages, data, or information so that no one can read or understand it, except for the rightful recipients, a data security system application with an encryption method using an algorithm is designed. The SHA-1 cryptographic hash function that takes input and produces a 160-bit hash value which is known as the message iteration is usually rendered as a 40-digit long hexadecimal number.


2020 ◽  
Vol 2020 (14) ◽  
pp. 306-1-306-6
Author(s):  
Florian Schiffers ◽  
Lionel Fiske ◽  
Pablo Ruiz ◽  
Aggelos K. Katsaggelos ◽  
Oliver Cossairt

Imaging through scattering media finds applications in diverse fields from biomedicine to autonomous driving. However, interpreting the resulting images is difficult due to blur caused by the scattering of photons within the medium. Transient information, captured with fast temporal sensors, can be used to significantly improve the quality of images acquired in scattering conditions. Photon scattering, within a highly scattering media, is well modeled by the diffusion approximation of the Radiative Transport Equation (RTE). Its solution is easily derived which can be interpreted as a Spatio-Temporal Point Spread Function (STPSF). In this paper, we first discuss the properties of the ST-PSF and subsequently use this knowledge to simulate transient imaging through highly scattering media. We then propose a framework to invert the forward model, which assumes Poisson noise, to recover a noise-free, unblurred image by solving an optimization problem.


Author(s):  
Preecha Yupapin ◽  
Amiri I. S. ◽  
Ali J. ◽  
Ponsuwancharoen N. ◽  
Youplao P.

The sequence of the human brain can be configured by the originated strongly coupling fields to a pair of the ionic substances(bio-cells) within the microtubules. From which the dipole oscillation begins and transports by the strong trapped force, which is known as a tweezer. The tweezers are the trapped polaritons, which are the electrical charges with information. They will be collected on the brain surface and transport via the liquid core guide wave, which is the mixture of blood content and water. The oscillation frequency is called the Rabi frequency, is formed by the two-level atom system. Our aim will manipulate the Rabi oscillation by an on-chip device, where the quantum outputs may help to form the realistic human brain function for humanoid robotic applications.


Sign in / Sign up

Export Citation Format

Share Document