scholarly journals Results on Neutrino and Antineutrino Oscillations from the NOvA Experiment

2019 ◽  
Vol 64 (7) ◽  
pp. 613
Author(s):  
T. Nosek

NOvA is a two-detector long-baseline neutrino oscillation experiment using Fermilab’s 700 kW NuMI muon neutrino beam. With a total exposure of 8.85×1020 +12.33×1020 protons on target delivered to NuMI in the neutrino + antineutrino beam mode (78% more antineutrino data than in 2018), the experiment has made a 4.4q-significant observation of the ve appearance in a vм beam, measured oscillation parameters |Δm232|, sin2O23, and excluded most values near бCP = п/2 for the inverted neutrino mass hierarchy by more than 3q.

Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 21
Author(s):  
Dean Karlen ◽  
on behalf of the TtwoK Collaboration

The T2K long baseline neutrino oscillation experiment measures muon neutrino disappearance and electron neutrino appearance in accelerator-produced neutrino and anti-neutrino beams. This presentation reports on the analysis of our data from an exposure of 2 . 6 × 10 21 protons on target. Results for oscillation parameters, including the CP violation parameter and neutrino mass ordering, are shown.


2002 ◽  
Vol 17 (24) ◽  
pp. 3364-3377 ◽  
Author(s):  
◽  
C. K. JUNG

K2K is a long baseline neutrino oscillation experiment using a neutrino beam produced at the KEK 12 GeV PS, a near detector complex at KEK and a far detector (Super-Kamiokande) in Kamioka, Japan. The experiment was constructed and is being operated by an international consortium of institutions from Japan, Korea, and the US. The experiment started taking data in 1999 and has successfully taken data for about two years. K2K is the first long beseline neutrino oscillation experiment with a baseline of order hundreds of km and is the first accelerator based neutrino oscillation experiment that is sensitive to the Super-Kamiokande allowed region obtained from the atmospheric neutrino oscillation analysis. A total of 44 events have been observed in the far detector during the period of June 1999 to April 2001 corresponding to 3.85 × 1019 protons on target. The observation is consistent with the neutrino oscillation expectations based on the oscillation parameters derived from the atmospheric neutrinos, and the probability that this is a statistical fluctuation of non-oscillation expectation of [Formula: see text] is less than 3%.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Sandhya Choubey ◽  
Dipyaman Pramanik

Abstract In presence of non standard interactions (NSI), the solar neutrino data is consistent with two solutions, one close to the standard LMA solution with sin2θ12 ≃ 0.31 and another with $$ {\sin}^2{\theta}_{12}^D\simeq 0.69\left(=1-{\sin}^2{\theta}_{12}\right) $$ sin 2 θ 12 D ≃ 0.69 = 1 − sin 2 θ 12 . The latter has been called the Dark LMA (DLMA) solution in the literature and essentially brings an octant degeneracy in the measurement of the mixing angle θ12. This θ12 octant degeneracy is hard to resolve via oscillations because of the existence of the so-called “generalised mass hierarchy degeneracy” of the neutrino mass matrix in presence of NSI. One might think that if the mass hierarchy is independently determined in a non-oscillation experiment such as neutrino-less double beta decay, one might be able to break the θ12 octant degeneracy. In this paper we study this in detail in the context of long-baseline experiments (Pμμ channel) as well as reactor experiments (Pee channel) and show that if we combine information from both long-baseline and reactor experiments we can find the correct octant and hence value of θ12. We elaborate the reasons for it and study the prospects of determining the θ12 octant using T2HK, DUNE and JUNO experiments. Of course, one would need information on the neutrino mass hierarchy as well.


2008 ◽  
Vol 23 (21) ◽  
pp. 3388-3394
Author(s):  
HISAKAZU MINAKATA

I discuss why and how powerful is the two-detector setting in neutrino oscillation experiments. I cover three concrete examples: (1) reactor θ13 experiments, (2) T2KK, Tokai-to-Kamioka-Korea two-detector complex for measuring CP violation, determining the neutrino mass hierarchy, and resolving the eight-fold parameter degeneracy, (3) two-detector setting in a neutrino factory at baselines 3000 km and 7000 km for detecting effects of non-standard interactions (NSI) of neutrinos.


2018 ◽  
Vol 46 ◽  
pp. 1860038 ◽  
Author(s):  
Erica Smith

The NOvA experiment is a long-baseline accelerator-based neutrino oscillation experiment. It uses the upgraded NuMI beam from Fermilab to measure electron-neutrino appearance and muon-neutrino disappearance between the Near Detector, located at Fermilab, and the Far Detector, located at Ash River, Minnesota. The NuMI beam has recently reached and surpassed the 700 kW power benchmark. NOvA’s primary physics goals include precision measurements of oscillation parameters, such as [Formula: see text] and the atmospheric mass-squared splitting, along with probes of the mass hierarchy and of the CP violating phase. This talk will present the latest NOvA results, based on a neutrino beam exposure equivalent to [Formula: see text] protons-on-target.


2014 ◽  
Vol 2014 ◽  
pp. 1-29 ◽  
Author(s):  
Sanjib Kumar Agarwalla

The discovery of neutrino mixing and oscillations over the past decade provides firm evidence for new physics beyond the Standard Model. Recently,θ13has been determined to be moderately large, quite close to its previous upper bound. This represents a significant milestone in establishing the three-flavor oscillation picture of neutrinos. It has opened up exciting prospects for current and future long-baseline neutrino oscillation experiments towards addressing the remaining fundamental questions, in particular the type of the neutrino mass hierarchy and the possible presence of a CP-violating phase. Another recent and crucial development is the indication of non-maximal 2-3 mixing angle, causing the octant ambiguity ofθ23. In this paper, I will review the phenomenology of long-baseline neutrino oscillations with a special emphasis on sub-leading three-flavor effects, which will play a crucial role in resolving these unknowns. First, I will give a brief description of neutrino oscillation phenomenon. Then, I will discuss our present global understanding of the neutrino mass-mixing parameters and will identify the major unknowns in this sector. After that, I will present the physics reach of current generation long-baseline experiments. Finally, I will conclude with a discussion on the physics capabilities of accelerator-driven possible future long-baseline precision oscillation facilities.


Sign in / Sign up

Export Citation Format

Share Document