atmospheric mass
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 41)

H-INDEX

24
(FIVE YEARS 5)

2022 ◽  
Vol 924 (1) ◽  
pp. 9
Author(s):  
Tim Hallatt ◽  
Eve J. Lee

Abstract The sub-Saturn (∼4–8 R ⊕) occurrence rate rises with orbital period out to at least ∼300 days. In this work we adopt and test the hypothesis that the decrease in their occurrence toward the star is a result of atmospheric mass loss, which can transform sub-Saturns into sub-Neptunes (≲4 R ⊕) more efficiently at shorter periods. We show that under the mass-loss hypothesis, the sub-Saturn occurrence rate can be leveraged to infer their underlying core mass function, and, by extension, that of gas giants. We determine that lognormal core mass functions peaked near ∼10–20 M ⊕ are compatible with the sub-Saturn period distribution, the distribution of observationally inferred sub-Saturn cores, and gas-accretion theories. Our theory predicts that close-in sub-Saturns should be ∼50% less common and ∼30% more massive around rapidly rotating stars; this should be directly testable for stars younger than ≲500 Myr. We also predict that the sub-Jovian desert becomes less pronounced and opens up at smaller orbital periods around M stars compared to solar-type stars (∼0.7 days versus ∼3 days). We demonstrate that exceptionally low-density sub-Saturns, “super-puffs,” can survive intense hydrodynamic escape to the present day if they are born with even larger atmospheres than they currently harbor; in this picture, Kepler 223 d began with an envelope ∼1.5× the mass of its core and is currently losing its envelope at a rate of ∼2 × 10−3 M ⊕ Myr−1. If the predictions from our theory are confirmed by observations, the core mass function we predict can also serve to constrain core formation theories of gas-rich planets.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1439
Author(s):  
Michael Connolly ◽  
Ronan Connolly ◽  
Willie Soon ◽  
Víctor M. Velasco Herrera ◽  
Rodolfo Gustavo Cionco ◽  
...  

In recent decades, efforts to investigate atmospheric circulation patterns have predominantly relied on either semi-empirical datasets (i.e., reanalyses) or modeled output (i.e., global climate models, GCMs). While both approaches can provide important insights, there is a need for more empirical data to supplement these approaches. In this paper, we demonstrate how the application of relatively simple calculations to the basic measurements from a standard weather balloon radiosonde can provide a vertical profile of the horizontal atmospheric mass fluxes. These mass fluxes can be resolved into their meridional (north/south) and zonal (east/west) components. This provides a new useful empirical tool for analyzing atmospheric circulations. As a case study, we analyze the results for a selected five stations along a fairly constant meridian in the North Atlantic sector from 2015–2019. For each station, we find the atmospheric mass flux profiles from the lower troposphere to mid-stratosphere are surprisingly coherent, suggesting stronger interconnection between the troposphere and stratosphere than previously thought. Although our five stations span a region nominally covered by the classical polar, Ferrel and Hadley meridional circulation cells, the results are inconsistent with those expected for polar and Ferrel cells and only partially consistent with that of a Hadley cell. However, the region is marked by very strong prevailing westerly (west to east) mass fluxes for most of the atmosphere except for the equatorial surface easterlies (“trade winds”). We suggest that the extension of the techniques of this case study to other stations and time periods could improve our understanding of atmospheric circulation patterns and their time variations.


Author(s):  
James G Rogers ◽  
Akash Gupta ◽  
James E Owen ◽  
Hilke E Schlichting

Abstract The EUV/X-ray photoevaporation and core-powered mass-loss models are both capable of reproducing the bimodality in the sizes of small, close-in exoplanets observed by the Kepler space mission, often referred to as the ‘radius gap’. However, it is unclear which of these two mechanisms dominates the atmospheric mass-loss which is likely sculpting the radius gap. In this work, we propose a new method of differentiating between the two models, which relies on analysing the radius gap in 3D parameter space. Using models for both mechanisms, and by performing synthetic transit surveys we predict the size and characteristics of a survey capable of discriminating between the two models. We find that a survey of ≳ 5000 planets, with a wide range in stellar mass and measurement uncertainties at a $\lesssim 5{{\ \rm per\ cent}}$ level is sufficient. Our methodology is robust against moderate false positive contamination of $\lesssim 10{{\ \rm per\ cent}}$. We perform our analysis on two surveys (which do not satisfy our requirements): the California Kepler Survey and the Gaia-Kepler Survey and find, unsurprisingly, that both data-sets are consistent with either model. We propose a hypothesis test to be performed on future surveys which can robustly ascertain which of the two mechanisms formed the radius gap, provided one dominates over the other.


SOIL ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 145-159
Author(s):  
Sam P. Jones ◽  
Aurore Kaisermann ◽  
Jérôme Ogée ◽  
Steven Wohl ◽  
Alexander W. Cheesman ◽  
...  

Abstract. The oxygen isotope composition of atmospheric carbon dioxide (CO2) is intimately linked to large-scale variations in the cycling of CO2 and water across the Earth's surface. Understanding the role the biosphere plays in modifying the oxygen isotope composition of atmospheric CO2 is particularly important as this isotopic tracer has the potential to constrain estimates of important processes such as gross primary production at large scales. However, constraining the atmospheric mass budget for the oxygen isotope composition of CO2 also requires that we understand better the contribution of soil communities and how they influence the rate of oxygen isotope exchange between soil water and CO2 (kiso) across a wide range of soil types and climatic zones. As the carbonic anhydrases (CAs) group of enzymes enhances the rate of CO2 hydration within the water-filled pore spaces of soils, it is important to develop understanding of how environmental drivers can impact kiso through changes in their activity. Here we estimate kiso and measure associated soil properties in laboratory incubation experiments using 44 soils sampled from sites across western Eurasia and north-eastern Australia. Observed values for kiso always exceeded theoretically derived uncatalysed rates, indicating a significant influence of CAs on the variability of kiso across the soils studied. We identify soil pH as the principal source of variation, with greater kiso under alkaline conditions suggesting that shifts in microbial community composition or intra–extra-cellular dissolved inorganic carbon gradients induce the expression of more or higher activity forms of CAs. We also show for the first time in soils that the presence of nitrate under naturally acidic conditions reduces kiso, potentially reflecting a direct or indirect inhibition of CAs. This effect appears to be supported by a supplementary ammonium nitrate fertilisation experiment conducted on a subset of the soils. Greater microbial biomass also increased kiso under a given set of chemical conditions, highlighting a putative link between CA expression and the abundance of soil microbes. These data provide the most extensive analysis of spatial variations in soil kiso to date and indicate the key soil trait datasets required to predict variations in kiso at large spatial scales, a necessary next step to constrain the important role of soil communities in the atmospheric mass budget of the oxygen isotope composition of CO2.


2021 ◽  
Author(s):  
Renyu Hu ◽  
Mario Damiano ◽  
Markus Scheucher ◽  
Edwin Kite ◽  
Sara Seager ◽  
...  

Abstract The recent discovery and initial characterization of sub-Neptune-sized exoplanets that receive stellar irradiance of approximately Earth's raised the prospect of finding habitable planets in the coming decade. Some of these temperate planets may support liquid water oceans, if they do not have massive H2/He envelopes and are thus not too hot at the bottom of the envelopes. For planets larger than Earth, and especially planets in the 1.7-3.5 R_Earth population, the mass of the H2/He envelope is typically not sufficiently constrained to assess the potential habitability. Here we show that the solubility equilibria vs. thermochemistry of carbon and nitrogen gases results in observable discriminators between small H2 atmospheres vs. massive ones. On temperate sub-Neptunes, the condition to form a liquid-water ocean and that to achieve the thermochemical equilibrium are mutually exclusive. The dominant carbon and nitrogen gases are typically CH4 and NH3 due to thermochemical recycling in a massive atmosphere of a temperate planet, and those in a small atmosphere overlying a liquid-water ocean are most likely CO2 and N2, followed by CO and CH4 produced photochemically. NH3 is depleted in the small atmosphere by dissolution into the liquid-water ocean. These gases lead to distinctive features in the planet's transmission spectrum, and a moderate number of repeated transit observations with the James Webb Space Telescope should readily tell apart a small atmosphere vs. a massive one via these spectral features on planets like K2-18 b. This method thus provides a way to use near-term facilities to constrain the atmospheric mass and habitability of temperate sub-Neptune exoplanets.


2021 ◽  
Vol 504 (2) ◽  
pp. 2034-2050
Author(s):  
Daria Kubyshkina ◽  
Aline A Vidotto

ABSTRACT The evolution of the atmospheres of low- and intermediate-mass planets is strongly connected to the physical properties of their host stars. The types and the past activities of planet-hosting stars can, therefore, affect the overall planetary population. In this paper, we perform a comparative study of sub-Neptune-like planets orbiting stars of different masses and different evolutionary histories. We discuss the general patterns of the evolved population as a function of parameters and environments of planets. As a model of the atmospheric evolution, we employ the own framework combining planetary evolution in Modules for Experiments in Stellar Astrophysics (mesa) with the realistic prescription of the escape of hydrogen-dominated atmospheres. We find that the final populations look qualitatively similar in terms of the atmospheres survival around different stars, but qualitatively different, with this difference accentuated for planets orbiting more massive stars. We show that a planet has larger chances of keeping its primordial atmosphere in the habitable zone of a solar-mass star compared to M or K dwarfs and if it starts the evolution having a relatively compact envelope. We also address the problem of the uncertain initial temperatures (luminosities) of planets and show that this issue is only of particular importance for planets exposed to extreme atmospheric mass losses.


Author(s):  
Alan Cannell

Three genera of very large volant birds existed for most of the Pliocene: the Pelagornithidae seabirds; the large North American Teratornithidae and the stork Leptoptilos falconeri in Africa and Asia. All became extinct around 3 Ma. The reasons for their demise are puzzling, as the Pelagornithidae had a world-wide evolutionary history of more than 50 Ma, smaller teratorns were still extant in the Holocene and smaller stork species are still globally extant. Extant large birds have a common critical takeoff airspeed suggesting a biomechanical limit in terms of power, risk and launch speed, and simulations of the flight of these extinct species suggest that at 1 bar they would have exceeded this value. Estimates for the Late Pliocene atmospheric density are derived from marine and terrestrial isotopes as well as resin chemistry, both approaches suggesting a value of about 1.2 bar, which drops to present levels during the period 3.3 to 2.6 Ma, thus a loss in atmospheric density may have caused biomechanical and ecological stress contributing to their extinction and/or development of smaller forms. This hypothesis is examined in terms of a possible mechanism of atmospheric mass loss and how this would be seen in the geological record. At 1.2 bar all the extinct species present takeoff airspeeds similar to large extant volant birds and which match the expected power and kinetic energy levels.


2021 ◽  
Author(s):  
M. Carmen Alvarez-Castro ◽  
David Gallego ◽  
Pedro Ribera ◽  
Cristina Peña-Ortiz ◽  
Davide Faranda

<p>To better assess the future risks associated with Intense Mediterranean Cyclones (IMC) a better understanding of their features, variability, frequency and intensity is required, including a robust detection method. The application of different detection algorithms provides results that are remarkably similar in some aspects but may be very different in others even using the same data. Thus, the selection of a particular method can significantly affect the results. For these reasons it is necessary to use different approaches and datasets to study the sensitivity and robustness of the detection approach. Those approaches often use minima in sea-level pressure (SLP) or extrema in relative vorticity or both to first identify the eye of the cyclone. SLP reflects the atmospheric mass distribution, and is representative of synoptic-scale atmospheric processes. On the other hand, the relative vorticity displays higher variability and is representative of the atmospheric circulation, being able to detect several local extrema (more than one centre), it can reduce uncertainties in the cyclone detection and tracking.</p><p>Therefore, within the framework of the EFIMERA project and to detect and track IMC we use a combination of different methods based on previous studies found in the literature. This new list of detected IMC events, together with the observed and well documented ones, are used here to create a new IMC database to be used for the study of their impacts and risk associated.</p>


2021 ◽  
Author(s):  
Souvik Roy ◽  
Dibyendu Nandy

<p>Coronal mass ejections (CMEs), large scale transient eruptions observed in the Sun, are thought to also be spawned by other magnetically active stars. The magnetic flux ropes intrinsic to these storms, and associated high-speed plasma ejecta perturb planetary environments creating hazardous conditions. To understand the physics of CME impact and consequent perturbations in planetary environments, we use 3D compressible magnetohydrodynamic simulation of a star-planet module (CESSI-SPIM) developed at CESSI, IISER Kolkata based on the PLUTO code architecture.  We explore magnetohydrodynamic processes such as the formation of a bow-shock, magnetopause, magnetotail, planet-bound current sheets and atmospheric mass loss as a consequence of magnetic-storm-planetary interactions. Specifically, we utilize a realistic, twisted flux rope model for our CME, which leads to interesting dynamics related to helicity injection into the magnetosphere. Such studies will help us understand how energetic magnetic storms from host stars impact magnetospheres and atmospheres with implications for planetary and exoplanetary habitability.</p>


2021 ◽  
Author(s):  
Shashi Dixit ◽  
Petra Friederichs ◽  
Andreas Hense

<p>This work is part of the Research Group New Refined Observations of Climate Change from Spaceborne Gravity Missions (NEROGRAV), which is funded by the German Research Foundation (DFG). The goal of NEROGRAV is to develop new analysis methods and modeling approaches to improve the resolution, accuracy, and long-term consistency of mass transport series from the GRACE and GRACE-FO missions. This can only be obtained by improving the sensor data, background models, and processing strategies for satellite gravimetry. Within NEROGRAV, the joint Geodesy and Meteorology group at the University of Bonn is responsible for the investigation of the atmospheric and hydrological effects on the dealiasing of GRACE/GRACE-FO observations of the Earth’s gravity field.</p><p>In the present study we compare 3-hourly data from the ERA-Interim realanysis with a grid size of 50 km based on a hydrostatic model of the atmosphere and the houly data of the non-hydrostatic COSMO reanalysis with a grid size of 6 km (COSMO-REA6, Bollmeyer et.al (2015), QJRMS, <em>141</em>(686), 1-15.). To date, atmospheric mass variability has been studied largely through data from hydrostatic models of the atmosphere. Therefore a direct evaluation of the total atmospheric mass variability including non-hydrostatic effects compared to a hydrostatic background model is necessary. Further, GRACE/GRACE-FO is expected to be sensitive to the atmospheric water mass variability. Since a high resolution atmospheric model provides an intensified water cycle, a more localised and enhanced mass variability within all water components is expected in COSMO-REA6.</p><p>The objectives of this talk are to (1) present the evaluation results of non-hydrostatic effects and water mass transports on the atmospheric mass variability and (2) assess the scale effects of a coarse vs a fine resolution representation of the atmospheric mass. Both objectives place an emphasis on the contributions of the atmospheric hydrological cycle in two views: the systematic effects are investigated by the mean values, while spatial variability effects are investigated using a principal component analysis. The study concentrates on the summer season 2007 over the CORDEX (North Atlantic, European region) domain.</p>


Sign in / Sign up

Export Citation Format

Share Document