scholarly journals First records of Erysiphe corylacearum (Erysiphales, Ascomycota) on Corylus avellana in Ukraine

2019 ◽  
Vol 76 (3) ◽  
pp. 252-259 ◽  
Author(s):  
V.P. Heluta ◽  
◽  
N.V. Makarenko ◽  
G.A. Al-Maali ◽  
◽  
...  
Plant Disease ◽  
2020 ◽  
Author(s):  
Monica Mezzalama ◽  
Vladimiro Guarnaccia ◽  
Guido Martano ◽  
Davide Spadaro

Hazelnut (Corylus avellana) is widely grown in Italy, which is the second largest producer worldwide with 132,700 tonnes harvested from 78,593 hectares (FAOSTAT, 2018 ). Powdery mildew caused by Phyllactinia guttata has been reported in Italy and in other European countries, but recently in Austria, Switzerland and in central Europe a new species was discovered (Voglmayr et al., 2020; Beenken, 2020). During summer 2020, in Villar Fioccardo (Torino province, Piedmont, Italy) on hazelnut (cv. ‘Tonda Gentile’) growing on the edges of private gardens and parks, an extensive colonization of the adaxial side of the leaves with white powdery mycelium covering more than 80% of the surface was observed. Also, the abaxial side of the leaves showed the scattered presence of powdery, white, and thin mycelium. The powdery fungal pathogen collected from leaves had amphigenous, hyaline, branched, septate 1.5 to 3.7 μm wide mycelium; lobed, solitary hyphal appressoria; vertically elevated above the mycelium 53 to 82 μm long and 5 to 12 μm wide conidiophores (n = 30); hyaline, ellipsoid, ovoid to doliform conidia, solitary on conidiophores, 21 to 36 μm long, 15 to 21 μm wide (average 28 to 18 μm) (n = 50). Chasmothecia appeared in late September 2020 and they were spherical, single or in groups, 83 to 138 (average 100) μm in diameter (n = 50); 7 to 15 aseptate appendages were straight, sometimes flexuous, 55 to 111 (average 73) μm long (n = 50), with four to five times dichotomous branched apexes and recurved tips. In each chasmothecium, there were three to five ellipsoid, ovoid to subglobose asci with a length of 41 to 60 μm and a width of 28 to 56 μm (average 52 to 44 μm) (n = 30). Asci contained four to eight ascospores, 15 to 26 μm long and 10 to 17 μm wide (average 19 to 12 μm) (n =50). Mycelia were carefully scraped from the leaves with a scalpel and DNA was extracted by using the E.Z.N.A. Fungal DNA Mini Kit (Omega Bio-Tek, Darmstadt, Germany). Partial rDNA internal transcribed spacer region (ITS) of two isolates (DB20SET01, DB20SET01) was amplified using specific primers PMITS1/PMITS2 (Cunnington et al. 2003) and sequenced. Obtained sequences were deposited in GenBank (Accession Nos. MW045425, MW045426). BLAST analysis of the obtained 749-bp fragments showed 100% identity to ITS rDNA sequences of Erysiphe corylacearum from Switzerland (MN822721) and Azerbaijan (LC270863). One-year-old plants of C. avellane cv. Tonda Gentile were artificially inocuated by dusting conidia from infected leaves. Inoculated plants were incubated under controlled conditions at 23°C ± 1 and 70 to 80% relative humidity. Typical symptoms (white bloom) appeared on the upper surface of the leaves at 8 to 10 days after inoculation. No symptoms were found on control plants treated with sterile water. The fungus isolated from inoculated leaves was morphologically identical to the original isolates from diseased plants collected from Villar Fioccardo. Erysiphe corylacearum causes a new and aggressive form of powdery mildew. Since the first observation in north-eastern Turkey in 2013, it has spread rapidly throughout the Black Sea region, causing significant economic losses (Sezer et al., 2017). It has also been reported in Iran, Azerbaijan, and Ukraine (Arzanlou et al. 2018; Heluta et al., 2018). The disease has been observed sporadically in Piedmont, Italy, during summer 2020 (Regione Piemonte & Agrion, 2020) in some hazelnut growing areas, but presently, doesn’t appear to impact yield. This is the first report of E. corylacearum, causing an aggressive powdery mildew on hazelnut in Italy, and as such, may more severely affect hazelnut groves in Italy and cause considerable yield losses. Literature cited Arzanlou M et al. 2018. Forest Pathology, 48:e12450. https://doi.org/10.1111/efp.12450. Beenken L et al. 2020. New Disease Reports 41, 11. http://dx.doi.org/10.5197/j.2044-0588.2020.041.011. Cunnington JH et al. 2003. Australasian Plant Pathology, 32, 421-428. Food and Agriculture Organization (FAO). 2018. http://www.fao.org/faostat/en/#home Heluta V.P. et al.2019. Ukrainian Botanical Journal, 2019, 76(3), 252-259. Regione Piemonte SFR & Agrion. 2020. https://www.regione.piemonte.it/web/sites/default/files/media/documenti/2020-10/mal_bianco_nocciolo_da_erysiphe_corylacearum.pdf Sezer AD et al. 2017. Phytoparasitica, 45, 577-581. Voglmayr H et al. 2020. New Disease Reports, 42, 14 http://dx.doi.org/10.5197/j.2044-0588.2020.042.014


2021 ◽  
Vol 44 (1) ◽  
Author(s):  
A. Mazzaglia ◽  
M.I. Drais ◽  
S. Turco ◽  
C. Silvestri ◽  
V. Cristofori ◽  
...  

2020 ◽  
Vol 42 ◽  
pp. 14
Author(s):  
H. Voglmayr ◽  
T. Zankl ◽  
I. Krisai-Greilhuber ◽  
T. Kirisits

Author(s):  

Abstract A new distribution map is provided for Erysiphe corylacearum Braun and Takamatsu (Leotiomycetes: Erysiphales: Erysiphaceae). Host: hazelnut (Corylus avellana). Information is given on the geographical distribution in Asia (Azerbaijan, China, Beijing, Liaoning, Yunnan, Republic of Georgia, Iran, Japan, Korea Republic, Turkey) and Europe (Austria, Italy, Romania, Russia, Russian Far East, Southern Russia, Switzerland, Ukraine, Crimea).


Plant Disease ◽  
2021 ◽  
Author(s):  
Marco Rosati ◽  
Marian Bogoescu ◽  
Davide Spadaro

Romania has an area dedicated to hazelnut (Corylus avellana L.), covering 890 hectares as of 2019. During October 2020, powdery mildew symptoms were observed on the upper side of leaves of hazelnut ‘Tonda di Giffoni’ in two commercial orchards in Dudeștii Vechi, Romania (Fig. 1). The disease was present on 70% of the trees in planting, with at least 5 leaves per tree having powdery mildew. Micromorphological examination revealed amphigenous, hyaline, branched, septate mycelial patches of 2.3 to 3.6 μm in diameter. Conidiophores measured 24-60 × 5-6 (average: 45 × 6) μm and consisted of erect, cylindrical to flexuous foot cells, followed by 1-2 shorter cells. Ellipsoid, ovoid to doliform conidia were produced singly and they measured 19-35 × 16-24 (average: 28 × 19) μm. Chasmothecia were spherical, 75 to 107 (average: 88) μm in diameter. Nine to thirteen straight, sometimes flexuous, appendages measured 54 to 92 (average: 66) μm in length and they had five times dichotomous branched apices with curved tips (Fig. 2). Each chasmothecium contained three to five ellipsoid, ovoid to subglobose asci measuring 41-58 × 29-55 μm (average 52 × 43) μm. The asci contained four to eight ascospores measuring 13-24 × 11-15 (average 18 × 14) μm. Morphological identification was confirmed by sequencing the ITS-region of rDNA using two isolates from leaves, stored as frozen mycelium at -20°C. PCR was performed with Erysiphales-specific primer pair PMITS1/PMITS2 (Cunnington et al. 2003). The obtained sequences were deposited in GenBank (Accession n° MW423075, MW423076). Blast analysis of both sequences had 100% identity to ITS rDNA sequences of Erysiphe corylacearum from Azerbaijan (Abasova et al. 2018; Accession n° LC270863), Turkey (Sezer et al. 2017; KY082910), Switzerland (Beenken et al. 2020; MN82272), Iran (Arzanlou et al. 2018; MH047243), Italy (Mezzalama et al. 2020; MW045425) and 99% identity from Georgia (Meparishvili et al. 2019; MK157199). The sequences had a lower percent identity (83%) to Phyllactinia guttata (Accession n° AB080558) (Fig. 3). Pathogenicity was verified on one-year-old plants of C. avellana ‘Tonda di Giffoni’, which were artificially inoculated with a conidial suspension from infected leaves (n = 25). Inoculated plants were incubated at 20 to 28°C with 70 to 80% relative humidity. White mycelium appeared on the upper surface of the leaves at 8 to 10 days after inoculation. No symptoms were found on control plants sprayed with sterile water. The fungus present on inoculated leaves was morphologically identical to the original isolates from diseased trees from the field. E. corylacearum is native to East Asia and was previously reported in Japan on wild species of Corylus (Takamatsu et al. 2015; Accession n° LC009928). The pathogen most likely spread into Europe from east to west of Europe (Heluta et al. 2019), through the Caucasus, starting from Turkey, Azerbaijan, Georgia, and Iran. P. guttata was considered the only causal agent of powdery mildew on hazelnut in most countries, including Romania (Brown 1995). Compared to P. guttata, which generally develops a mycelium on the underside of leaves, E. corylacearum grows with a white mycelium on the upper side of the leaves. Recently, E. corylacearum on C. avellana was reported also in Ukraine (Heluta et al. 2019), from which it could have moved to Romania. Crop protection strategies for hazelnut should be revised according to the new pathogen occurrence.


2018 ◽  
Vol 48 (5) ◽  
pp. e12450 ◽  
Author(s):  
Mahdi Arzanlou ◽  
Mohsen Torbati ◽  
Hadi Golmohammadi

2019 ◽  
pp. 105-115
Author(s):  
А.Ш. Хужахметова

Показана актуальность изучения экологической пластичности древесных растений в связи с необходимостью подбора адаптированного видового состава деревьев и кустарников для защитных лесных насаждений в условиях климатических изменений. Установлено, что экологическая пластичность и пределы толерантности растений связаны со свойством организмов адаптироваться к тому или иному диапазону факторов среды. В статье представлен таксономический состав орехоплодных культур коллекций ФНЦ агроэкологии РАН. Это шесть видов рода Juglans: J. regia, J. mandshurica, J. cinerea, J. rupestris, J. ailanthifolia, J. nigra и три вида рода Corylus: С. avellana L., С. аmericana W., сорта С. pontica C. Koch Президент, Футкурами, Черкесский2. Приведены сведения о положительном опыте культивирования Corylus avellana L. в плантационных насаждениях (1,6 га, посадка рядовая, схема размещения 55 м) в условиях южных черноземов. Цель исследований изучить экологическую пластичность орехоплодных кустарников коллекций ФНЦ агроэкологии РАН. На примере родового комплекса Corylus получены материалы по экологической пластичности орехоплодных кустарников в условиях каштановых (кадастр. 34:36:0000:14:0178), светлокаштановых почв (34:34:000000:122 34:34:060061:10). Установлены уровни изменчивости морфологических признаков ассимиляционного аппарата и плодов С. avellana L., сортов С. pontica C. Koch., которые согласуются с зимо и засухоустойчивостью. Кластерный анализ позволил выявить корреляцию признаков при 5 уровне значимости. Для целей защитного лесоразведения и озеленения засушливых районов рекомендованы Corylus avellana и Черкесский2 с выраженной вариабельностью морфологических признаков, которая указывает на их широкую экологическую валентность и адаптационные возможности в рассматриваемых условиях. The urgency of studying the ecological plasticity of woody plants in connection with the need to select an adapted species composition of trees and shrubs for protective forest plantations in the context of climate change is shown. It is established that the ecological plasticity and tolerance range of plants is associated with the ability of organisms to adapt to a particular range of environmental factors. The article presents the taxonomic composition of nut crops in the collections of FSC Agroecology RAS. Six species of Juglans: J. regia, J. mandshurica, J. cinerea, J. rupestris, J. ailanthifolia, J. nigra and three species of the genus Corylus: С. avellana L., С. аmericana W., varieties of C. pontica C. Koch the President, Futkurami, Circassian2. Data on positive experience of cultivation of Corylus avellana L. in plantation plantings (1,6 hectares, landing ordinary, the scheme of placement of 55 m) in the conditions of southern chernozems are given. The purpose of the research is to study the ecological plasticity of nutbearing shrubs of the collections of the Federal scientific center for Agroecology Russian Academy of Sciences. For example, a generic complex Corylus submissions received on the environmental plasticity of nut bushes in the conditions of brown (the cadaster nubmer 34:36:0000:14:0178), light chestnut soils (34:34:000000:122 34:34:060061:10). The levels of variability of morphological features of the assimilation apparatus and fruits of Corylus avellana L., С. pontica C. Koch varieties were established., which are consistent with winter and drought resistance. Cluster analysis revealed the correlation of features at 5 significance level. Corylus avellana and Circassian2 with a pronounced variability of morphological features, which indicates their broad ecological valence and adaptation capabilities in the conditions under consideration, are recommended for the purposes of protective afforestation and greening of dry areas.


Sign in / Sign up

Export Citation Format

Share Document