Lava Flow Simulation for the Disaster Area of the Volcano Eruption

2004 ◽  
Vol 124 (5) ◽  
pp. 1165-1172
Author(s):  
Tomoya Ishikawa ◽  
Noriaki Muranaka ◽  
Tkahiro Ishida ◽  
Junichi Hashimoto ◽  
Msataka Tokumaru ◽  
...  
2017 ◽  
Vol 26 (1) ◽  
pp. 93-98
Author(s):  
Chung-Hwan Lee ◽  
Dong-jin Hong Lee ◽  
Eui-young Cha ◽  
Sung-Hyo Yun

2006 ◽  
Vol 32 (4) ◽  
pp. 512-526 ◽  
Author(s):  
M.L. Damiani ◽  
G. Groppelli ◽  
G. Norini ◽  
E. Bertino ◽  
A. Gigliuto ◽  
...  

1986 ◽  
Vol 6 (4) ◽  
pp. 137-140 ◽  
Author(s):  
G.M. Crisci ◽  
Di. Gregorio ◽  
O. Pindaro ◽  
G.A. Ranieri

2009 ◽  
Vol 10 (9) ◽  
pp. n/a-n/a ◽  
Author(s):  
Cristina Proietti ◽  
Mauro Coltelli ◽  
Maria Marsella ◽  
Eisuke Fujita

2012 ◽  
Vol 35 ◽  
pp. 122-131 ◽  
Author(s):  
Giuseppe Bilotta ◽  
Annalisa Cappello ◽  
Alexis Hérault ◽  
Annamaria Vicari ◽  
Giovanni Russo ◽  
...  

2021 ◽  
Author(s):  
Alejandro Rodriguez-Gonzalez ◽  
Claudia Prieto-Torrell ◽  
Meritxell Aulinas ◽  
Francisco José Perez-Torrado ◽  
Jose-Luis Fernandez-Turiel ◽  
...  

<p>Lava flow simulations are valuable tools for forecasting and assessing the areas that may be potentially affected by new eruptions, but also for interpreting past volcanic events and understanding the controls on lava flow behaviour. The plugin Q-LavHA v3.0 (Mossoux et al., 2016), integrated into QGIS, allows simulating the inundation probability of an a’a lava flow from one or more eruptive vents spatially distributed in a Digital Elevation Model (DEM). Q-LavHA allows running probabilistic and deterministic methods to calculate the spatial propagation and the maximum length of lava flows, considering a number of morphometric and/or thermo-rheological parameters.</p><p>El Hierro is the smallest and westernmost island of the Canary Archipelago where basaltic lava flows infer the major volcanic hazard. However, no lava flow emplacement modelling has been carried out yet on the island. Here we present Montaña Aguarijo's lava flow simulation, a monogenetic volcano located on the NW rift of El Hierro. Detailed geological fieldwork and current topographic-bathymetric data were used to reconstruct the pre-eruption (before the eruption modifies the relief) and post-eruption (at the end of the eruption, prior to erosive processes) DEMs. The obtained morphometric parameters of the lava flow (2,268m long; 5m medium thickness; 422,560m<sup>3</sup>) were used to run probabilistic (Maximum Length) and deterministic (FLOWGO) models. The latter also considers a set of thermo-rheological properties of the lava flow such as initial viscosity, phenocryst content, or vesicle proportion.</p><p>Results obtained show a high degree of overlap between the real and simulated lava flows. Therefore, the thermo-rheological parameters considered in the deterministic approach are close to the real ones that constrained Montaña Aguarijo lava flow propagation. Moreover, this work evidence the effectiveness of Q-LavHA plugin when simulating complex lava flows such as Montaña Aguarijo’s lava which runs through a coastal platform, a typical morphology of oceanic volcanic islands.     </p><p>Financial support was provided by Project LAJIAL (ref. PGC2018-101027-B-I00, MCIU/AEI/FEDER, EU). This study was carried out in the framework of the Research Consolidated Groups GEOVOL (Canary Islands Government, ULPGC) and GEOPAM (Generalitat de Catalunya, 2017 SGR 1494).</p><p><strong>References</strong></p><p>Mossoux, S., Saey, M., Bartolini, S., Poppe, S., Canters F., Kervyn, M. (2016). Q-LAVHA: A flexible GIS plugin to simulate lava flows. <em>Computers & Geosciences</em>, 97, 98-109.</p>


Author(s):  
Alexandra Shakirova ◽  
Pavel Firstov ◽  
Mikhail Lemzikov

"Drumbeats" is an unusual seismic mode consisting of volcanic micro-earthquakes with monotonous waveforms (multiplets) that are recorded from tens of minutes to months. Due to the quasi-regularity of the occurrence of earthquakes, the mode was called "drumbeats". The "drumbeats" mode is registered when individual blocks are squeezed out on the extrusive domes of andesite and dacite volcanoes of the world and occurs at stable equilibrium states in the channel-magma system during an eruption. For the first time in the world practice of volcanological research, the "drumbeats" mode was registered, accompanying the movement of a viscous lava flow with a volume of 0.3 km3 of the Kizimen volcano eruption in 2010-2013. The paper considers kinematic and dynamic parameters of micro-earthquakes of the "drumbeats" mode, their mechanisms, and offers a phenomenological model for generating the "drumbeats" mode that occurs when a lava flow moves along the slope of the Kizimen volcano.


Sign in / Sign up

Export Citation Format

Share Document