Journal of Applied Volcanology
Latest Publications


TOTAL DOCUMENTS

121
(FIVE YEARS 31)

H-INDEX

21
(FIVE YEARS 4)

Published By Springer (Biomed Central Ltd.)

2191-5040, 2191-5040

2022 ◽  
Vol 11 (1) ◽  
Author(s):  
J. B. Lowenstern ◽  
K. Wallace ◽  
S. Barsotti ◽  
L. Sandri ◽  
W. Stovall ◽  
...  

AbstractIn November 2019, the fourth Volcano Observatory Best Practices workshop was held in Mexico City as a series of talks, discussions, and panels. Volcanologists from around the world offered suggestions for ways to optimize volcano-observatory crisis operations. By crisis, we mean unrest that may or may not lead to eruption, the eruption itself, or its aftermath, all of which require analysis and communications by the observatory. During a crisis, the priority of the observatory should be to acquire, process, analyze, and interpret data in a timely manner. A primary goal is to communicate effectively with the authorities in charge of civil protection. Crisis operations should rely upon exhaustive planning in the years prior to any actual unrest or eruptions. Ideally, nearly everything that observatories do during a crisis should be envisioned, prepared, and practiced prior to the actual event. Pre-existing agreements and exercises with academic and government collaborators will minimize confusion about roles and responsibilities. In the situation where planning is unfinished, observatories should prioritize close ties and communications with the land and civil-defense authorities near the most threatening volcanoes.To a large extent, volcanic crises become social crises, and any volcano observatory should have a communication strategy, a lead communicator, regular status updates, and a network of colleagues outside the observatory who can provide similar messaging to a public that desires consistent and authoritative information. Checklists permit tired observatory staff to fulfill their duties without forgetting key communications, data streams, or protocols that need regular fulfilment (Bretton et al. Volcanic Unrest. Advances in Volcanology, 2018; Newhall et al. Bull Volcanol 64:3–20, 2020). Observatory leaders need to manage staff workload to prevent exhaustion and ensure that expertise is available as needed. Event trees and regular group discussions encourage multi-disciplinary thinking, consideration of disparate viewpoints, and documentation of all group decisions and consensus. Though regulations, roles and responsibilities differ around the world, scientists can justify their actions in the wake of an eruption if they document their work, are thoughtful and conscientious in their deliberations, and carry out protocols and procedures developed prior to volcanic unrest. This paper also contains six case studies of volcanic eruptions or observatory actions that illustrate some of the topics discussed herein. Specifically, we discuss Ambae (Vanuatu) in 2017–2018, Kīlauea (USA) in 2018, Etna (Italy) in 2018, Bárðarbunga (Iceland) in 2014, Cotopaxi (Ecuador) in 2015, and global data sharing to prepare for eruptions at Nyiragongo (Democratic Republic of Congo). A Spanish-language version of this manuscript is provided as Additional file 1.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Aline Peltier ◽  
Magdalena Oryaëlle Chevrel ◽  
Andrew J. L. Harris ◽  
Nicolas Villeneuve

AbstractEffective and rapid effusive crisis response is necessary to mitigate the risks associated with lava flows that could threaten or inundate inhabited or visited areas. At Piton de la Fournaise (La Réunion, France), well-established protocols between Observatoire Volcanologique du Piton de la Fournaise – Institut de Physique du Globe de Paris (OVPF-IPGP) and civil protection, and between scientists of a multinational array of institutes, allow effective tracking of eruptive crises and hazard management embracing all stakeholders. To assess the outstanding needs for such responses Tsang and Lindsay (J Appl Volcanol 9:9, 2020) applied a gap analysis to assess research gaps in terms of preparedness, response and recovery at 11 effusive centers, including Piton de la Fournaise. For Piton de la Fournaise, their gap analysis implied widespread gaps in the state of knowledge. However, their work relied on incomplete and erroneous data and methods, resulting in a gap analysis that significantly underrepresented this state of knowledge. We thus here re-build a correct database for Piton de la Fournaise, properly define the scope of an appropriate gap analysis, and provide a robust gap analysis, finding that there are, actually, very few gaps for Piton de la Fournaise. This is a result of the existence of a great quantity of published work in the peer-reviewed literature, as well as frequent reports documenting event impact in the local press and observatory reports. At Piton de la Fournaise, this latter (observatory-based) resource is largely due to the efforts of OVPF-IPGP who have a wealth of experience having responded to 81 eruptions since its creation in 1979 through the end of September 2021.Although welcome and necessary, especially if it is made by a group of scientists outside the local management of the volcanic risk (i.e., a neutral group), such gap analysis need to be sure to fully consider all available peer-reviewed literature, as well as newspaper reports, observatory releases and non-peer-reviewed eruption reports, so as to be complete and correct. Fundamentally, such an analysis needs to consider the information collected and produced by the volcano observatory charged with handling surveillance operations and reporting duties to civil protection for the volcano under analysis. As a very minimum, to ensure that a necessarily comprehensive and complete treatment of the scientific literature has been completed, we recommend that a third party expert, who is a recognized specialist in terms of research at the site considered, reviews and checks the material used for the gap analysis before final release of recommendations.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Ko Yamada

AbstractThis paper studies the news coverage of the 2014 Mt. Ontake eruption disaster from 2015 to 2019, and the public response to the fifth anniversary coverage. Information on the issues regarding the risk of low-frequency disaster events such as volcanic eruption is brought into the public largely through the media. Unless there is a volcano nearby, there are few opportunities to discuss volcanic disaster prevention, and enhance volcanic risk perception. Therefore, the media agendas on volcanic risk are an indicator of what people know about volcanic disaster preparedness. This study quantitatively analyzed the 2014 Mt. Ontake eruption reports of national, regional, and local newspapers to reveal their topic distributions. In addition, the anniversary gained intense public attention due to the large amount of media coverage. It was a significant opportunity for society to discuss volcanic risk. By observing people’s online responses to the anniversary coverage, a trend could be identified. We found a significant difference in media attention among the three newspaper types. The local newspaper covered four topics relating to volcanic risk in a well-balanced way, but the national and regional newspapers paid greater attention to one or two topics. Many online comments presented the view that a mountaineering should be done at individuals’ own risk, and volcano shelters would be ineffective for averting volcanic disasters. The anniversary coverage unintentionally contributes to stigmatizing or scapegoating a certain group, rather than promoting risk communication in the public sphere on the Web. With the onset of the information and communication information technology era, an online dialogue regarding disaster awareness and prevention is important. A volcano disaster risk communication strategy on the Web should be developed.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Lauren J. Vinnell ◽  
Emma E. Hudson-Doyle ◽  
David M. Johnston ◽  
Julia S. Becker ◽  
Lucy Kaiser ◽  
...  

AbstractLahars pose a significant risk to communities, particularly those living near snow-capped volcanoes. Flows of mud and debris, typically but not necessarily triggered by volcanic activity, can have huge impacts, such as those seen at Nevado Del Ruiz, Colombia, in 1985 which led to the loss of over 23,000 lives and destroyed an entire town. We surveyed communities around Mount Rainier, Washington, United States, where over 150,000 people are at risk from lahar impacts. We explored how factors including demographics, social effects such as perceptions of community preparedness, evacuation drills, and cognitive factors such as risk perception and self-efficacy relate to preparedness when living within or nearby a volcanic hazard zone. Key findings include: women have stronger intentions to prepare but see themselves as less prepared than men; those who neither live nor work in a lahar hazard zone were more likely to have an emergency kit and to see themselves as more prepared; those who will need help to evacuate see the risk as lower but feel less prepared; those who think their community and officials are more prepared feel more prepared themselves; and benefits of evacuation drills and testing evacuation routes including stronger intentions to evacuate using an encouraged method and higher self-efficacy. We make a number of recommendations based on these findings including the critical practice of regular evacuation drills and the importance of ongoing messaging that focuses on appropriate ways to evacuate as well as the careful recommendation for residents to identify alternative unofficial evacuation routes.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Alessandro Gattuso ◽  
Costanza Bonadonna ◽  
Corine Frischknecht ◽  
Sabatino Cuomo ◽  
Valérie Baumann ◽  
...  

AbstractLahars are rapid flows composed of water and volcaniclastic sediments, which have the potential to impact residential buildings and critical infrastructure as well as to disrupt critical services, especially in the absence of hazard-based land-use planning. Their destructive power is mostly associated with their velocity (related to internal flow properties and topographic interactions) and to their ability to bury buildings and structures (due to deposit thickness). The distance reached by lahars depends on their volume, on sediments/water ratio, as well as on the geometrical properties of the topography where they propagate. Here we present the assessment of risk associated with lahar using Vulcano island (Italy) as a case study. First, we estimated an initial lahar source volume considering the remobilisation by intense rain events of the tephra fallout on the slopes of the La Fossa cone (the active system on the island), where the tephra fallout is associated with the most likely scenario (e.g. long-lasting Vulcanian cycle). Second, we modelled and identified the potential syn-eruptive lahar impact areas on the northern sector of Vulcano, where residential and touristic facilities are located. We tested a range of parameters (e.g., entrainment capability, consolidation of tephra fallout deposit, friction angle) that can influence lahar propagation output both in terms of intensity of the event and extent of the inundation area. Finally, exposure and vulnerability surveys were carried out in order to compile exposure and risk maps for lahar-flow front velocity (semi-quantitative indicator-based risk assessment) and final lahar-deposit thickness (qualitative exposure-based risk assessment). Main outcomes show that the syn-eruptive lahar scenario with medium entrainment capability produces the highest impact associated with building burial by the final lahar deposit. Nonetheless, the syn-eruptive lahar scenario with low entrainment capacity is associated with higher runout and results in the highest impact associated with lahar-flow velocities. Based on our simulations, two critical infrastructures (telecommunication and power plant), as well as the main road crossing the island are exposed to potential lahar impacts (either due to lahar-flow velocity or lahar-deposit thickness or both). These results show that a risk-based spatial planning of the island could represent a valuable strategy to reduce the volcanic risk in the long term.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Audrey Michaud-Dubuy ◽  
Guillaume Carazzo ◽  
Edouard Kaminski

AbstractMount Pelée (Martinique) is one of the most active volcanoes in the Lesser Antilles arc with more than 34 magmatic events in the last 24,000 years, including the deadliest eruption of the 20th century. The current volcanic hazard map used in the civil security plan puts the emphasis on the volcanic hazard close to the volcano. This map is however based on an incomplete eruptive history and does not take into account the variability of the expected source conditions (mass eruption rate, total erupted mass, and grain-size distribution) or the wind effect on ash dispersal. We propose here to refine the volcanic hazard map for tephra fallout by using the 2-D model of ash dispersal HAZMAP. We first simulate the maximum expected eruptive scenario at Mount Pelée (i.e., the P3 eruption) using a seasonal wind profile. Building upon the good agreement with field data, we compute probability maps based on this maximum expected scenario, which show that tephra fallout hazard could threaten not only areas close to the volcano but also the southern part of Martinique. We then use a comprehensive approach based on 16 eruptive scenarios that include new field constraints obtained in the recent years on the past Plinian eruptions of Mount Pelée volcano. Each eruptive scenario considers different values of total erupted mass and mass eruption rate, and is characterized by a given probability of occurrence estimated from the refined eruptive history of the volcano. The 1979-2019 meteorological ERA-5 database is used to further take into account the daily variability of winds. These new probability maps show that the area of probable total destruction is wider when considering the 16 scenarios compared to the maximum expected scenario. The southern part of Martinique, although less threatened than when considering the maximum expected scenario, would still be impacted both by tephra fallout and by its high dependence on the water and electrical network carried from the northern part of the island. Finally, we show that key infrastructures in Martinique (such as the international airport) have a non-negligible probability of being impacted by a future Plinian eruption of the Mount Pelée. These results provide strong arguments for and will support significant and timely reconceiving of the emergency procedures as the local authorities have now placed Mount Pelée volcano on alert level yellow (vigilance) based on increased seismicity and tremor-type signals.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Costanza Bonadonna ◽  
Corine Frischknecht ◽  
Scira Menoni ◽  
Franco Romerio ◽  
Chris E. Gregg ◽  
...  

AbstractRisk assessments in volcanic contexts are complicated by the multi-hazard nature of both unrest and eruption phases, which frequently occur over a wide range of spatial and temporal scales. As an attempt to capture the multi-dimensional and dynamic nature of volcanic risk, we developed an integrAteD VolcanIc risk asSEssment (ADVISE) model that focuses on two temporal dimensions that authorities have to address in a volcanic context: short-term emergency management and long-term risk management. The output of risk assessment in the ADVISE model is expressed in terms of potential physical, functional, and systemic damage, determined by combining the available information on hazard, exposed systems and vulnerability. The ADVISE model permits qualitative, semi-quantitative and quantitative risk assessment depending on the final objective and on the available information. The proposed approach has evolved over a decade of study on the volcanic island of Vulcano (Italy), where recent signs of unrest combined with uncontrolled urban development and significant seasonal variations of exposed population result in highly dynamic volcanic risk. For the sake of illustration of all the steps of the ADVISE model, we focus here on the risk assessment of the transport system in relation to the tephra fallout associated with a long-lasting Vulcanian cycle.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiroyuki Yamada ◽  
Kohei Tateyama ◽  
Shino Naruke ◽  
Hisashi Sasaki ◽  
Shinichi Torigata ◽  
...  

AbstractThe destruction caused by ballistic ejecta from the phreatic eruptions of Mt. Ontake in 2014 and Mt. Kusatsu-Shirane (Mt. Moto-Shirane) in 2018 in Japan, which resulted in numerous casualties, highlighted the need for better evacuation facilities. In response, some mountain huts were reinforced with aramid fabric to convert them into shelters. However, a number of decisions must be made when working to increase the number of shelters, which depend on the location where they are to be built. In this study, we propose a method of using high-strength steel to reinforce wooden buildings for use as shelters. More specifically, assuming that ballistic ejecta has an impact energy of 9 kJ or more, as in previous studies, we developed a method that utilizes SUS304 and SS400 unprocessed steel plates based on existing impact test data. We found that SUS304 is particularly suitable for use as a reinforcing material because it has excellent impact energy absorption characteristics due to its high ductility as well as excellent corrosion resistance. With the aim of increasing the structural strength of steel shelters, we also conducted an impact test on a shelter fabricated from SS400 deck plates (i.e., steel with improved flexural strength provided by work-hardened trapezoidal corrugated plates). The results show that the shelter could withstand impact with an energy of 13.5 kJ (2.66 kg of simulated ballistic ejecta at 101 m/s on impact). In addition, from the result of the impact test using the roof-simulating structure, it was confirmed the impact absorption energy is further increased when artificial pumice as an additional protective layer is installed on this structure. Observations of the shelter after the impact test show that there is still some allowance for deformation caused by projectile impact, which means that the proposed steel shelter holds promise, not only structurally, but also from the aspects of transportation and assembly. Hence, the usefulness of shelters that use steel was shown experimentally. However, shelter construction should be suitable for the target environment.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Emmie M. Bonilauri ◽  
Andrew J. L. Harris ◽  
Julie Morin ◽  
Maurizio Ripepe ◽  
Domenico Mangione ◽  
...  

AbstractWhile a landslide at the volcanic island of Stromboli (Aeolian Islands, Italy) in December 2002 created a tsunami with a run-up of 10.9 m, two paroxysmal eruptions in the summer of 2019 caused a tsunami with an amplitude of 40 to 20 cm. All three events required rapid, spontaneous emergency evacuations of the beach zone as the time between tsunami generation and impact is around 4 min. These conditions thus require a special consideration of the issue of evacuation capabilities on the island in the event of a volcanogenic tsunami. The purpose of this paper is thus to (i) determine pedestrian evacuation times from high-risk coastal areas to safe zones, (ii) to assess building evacuation ease, and (iii) determine emergency evacuation plans (for buildings and coastal zones). For this purpose, we created a GIS-based risk analysis/mapping tool that also allowed macroscopic evacuation modelling. In our case, the high-risk zone to be evacuated involves an area extending to 10 m a.s.l. and involving 123 individual buildings over an area of 0.18 km2. The results show that 33% of the buildings can be evacuated in 4 min, and that a 10-min warning time is required for a complete and well-distributed evacuation whereby the population is evenly distributed between all evacuation exits to avoid the potential for congestion. Initial interviews of residents in the at-risk zone reveal a high level of awareness and a desire for personalized evacuation scenarios.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
A. H. Graettinger ◽  
A. T. Bearden

AbstractMaar volcanoes are produced by subsurface phreatomagmatic explosions that can move vertically and laterally during an eruption. Constraining the distances that maar-forming explosions move laterally, and the number of relocations common to these eruptions, is vital for informing hazard scenarios and numerical simulations. This study uses 241 intact Quaternary maar crater shapes to establish global trends in size and spacing of explosion position relocations. Maar craters are sorted into shape classes based on the presence of uniquely identifiable combinations of overlapping circular components in their geometry. These components are used to recognize the minimum number of explosion locations responsible for observed crater shapes. Craters with unique solutions are then used to measure the size and spacing of the explosion footprints, the circular area of the largest crater produced by a single explosion of a given energy, that produce the crater shape. Thus, even in the absence of abundant observations of maar-type eruptions, the typical range, size and spacing of explosion positions are derived from maar crater shapes. This analysis indicates that most Quaternary maar eruptions involved at least three different explosion locations spanning distances of 200–600 m that did not always follow the trend of the dike feeding the eruption. Additional evaluation of larger maars, consistent with stratigraphic studies, indicates that centers of explosive activity, and thus the origin of ballistic and density current hazards, can move as many as twenty times during a maar-forming eruption. These results provide the first quantitative constraints on the scale and frequency of lateral migration in maar eruptions and these values can directly contribute to hazard models and eruption event trees in advance of future maar-type eruptions.


Sign in / Sign up

Export Citation Format

Share Document