Analyses of Disruption of Cerebral White Matter Integrity in Schizophrenia with MR Diffusion Tensor Fiber Tracking Method

2010 ◽  
Vol 130 (5) ◽  
pp. 799-806 ◽  
Author(s):  
Utako Yamamoto ◽  
Tetsuo Kobayashi ◽  
Shinsuke Kito ◽  
Yoshihiko Koga
2010 ◽  
Vol 20 (2) ◽  
pp. 209-225 ◽  
Author(s):  
Sandra Chanraud ◽  
Natalie Zahr ◽  
Edith V. Sullivan ◽  
Adolf Pfefferbaum

2021 ◽  
Vol 11 (2) ◽  
pp. 133
Author(s):  
Che Mohd Nasril Che Mohd Nassir ◽  
Mazira Mohamad Ghazali ◽  
Amanina Ahmad Safri ◽  
Usman Jaffer ◽  
Wan Zaidah Abdullah ◽  
...  

Asymptomatic (or “silent”) manifestations of cerebral small vessel disease (CSVD) are widely recognized through incidental findings of white matter hyperintensities (WMHs) as a result of magnetic resonance imaging (MRI). This study aims to examine the potential associations of surrogate markers for the evaluation of white matter integrity in CSVD among asymptomatic individuals through a battery of profiling involving QRISK2 cardiocerebrovascular risk prediction, neuroimaging, neurocognitive evaluation, and microparticles (MPs) titers. Sixty asymptomatic subjects (mean age: 39.83 ± 11.50 years) with low to moderate QRISK2 scores were recruited and underwent neurocognitive evaluation for memory and cognitive performance, peripheral venous blood collection for enumeration of selected MPs subpopulations, and 3T MRI brain scan with specific diffusion MRI (dMRI) sequences inclusive of diffusion tensor imaging (DTI). WMHs were detected in 20 subjects (33%). Older subjects (mean age: 46.00 ± 12.00 years) had higher WMHs prevalence, associated with higher QRISK2 score and reduced processing speed. They also had significantly higher mean percentage of platelet (CD62P)- and leukocyte (CD62L)-derived MPs. No association was found between reduced white matter integrity—especially at the left superior longitudinal fasciculus (LSLF)—with age and neurocognitive function; however, LSLF was associated with higher QRISK2 score, total MPs, and CD62L- and endothelial cell-derived MPs (CD146). Therefore, this study establishes these multimodal associations as potential surrogate markers for “silent” CSVD manifestations in the well-characterized cardiocerebrovascular demographic of relatively young, neurologically asymptomatic adults. Furthermore, to the best of our knowledge, this study is the first to exhibit elevated MP counts in asymptomatic CSVD (i.e., CD62P and CD62L), which warrants further delineation.


Author(s):  
David J. Madden ◽  
Ilana J. Bennett ◽  
Agnieszka Burzynska ◽  
Guy G. Potter ◽  
Nan-kuei Chen ◽  
...  

Author(s):  
Corie W. Wei ◽  
Gang Guo ◽  
David J. Mikulis

Background:Diffusion tensor MRI fiber tractography (DTT) is the first non-invasive in vivo technique for delineating specific white matter (WM) tracts. In cerebral neoplasm, DTT can be used to illustrate the relationship of the tumor with respect to adjacent WM trajectories.Methods:Fiber tractography was used in this study to assess tumor-induced changes in WM trajectories in three cases of cerebral neoplasm: glioblastoma multiforme, meningioma, and anaplastic astrocytoma.Results:Three patterns of WM alteration were identified: 1) disruption, 2) displacement, and 3) infiltration. Tumor disruption of WM tracts was observed in glioblastoma multiforme, which terminated fibers crossing the corpus callosum. In meningioma, DTT illustrated bulk displacement of the corticospinal tract in the affected hemisphere as well as preservation of the deviated axons. In anaplastic astrocytoma, fiber tracking demonstrated disruption of WM tracts at the tumor origin as well as intact axons through areas of tumor infiltration.Conclusions:Fiber tracking results correlated with the clinical and histopathological features of the tumor. Larger case series will be required to determine if fiber tracking can add accuracy to existing imaging methods for grading tumors.


2007 ◽  
Vol 107 (3) ◽  
pp. 488-494 ◽  
Author(s):  
Jeffrey I. Berman ◽  
Mitchel S. Berger ◽  
Sungwon Chung ◽  
Srikantan S. Nagarajan ◽  
Roland G. Henry

Object Resecting brain tumors involves the risk of damaging the descending motor pathway. Diffusion tensor (DT)–imaged fiber tracking is a noninvasive magnetic resonance (MR) technique that can delineate the subcortical course of the motor pathway. The goal of this study was to use intraoperative subcortical stimulation mapping of the motor tract and magnetic source imaging to validate the utility of DT-imaged fiber tracking as a tool for presurgical planning. Methods Diffusion tensor-imaged fiber tracks of the motor tract were generated preoperatively in nine patients with gliomas. A mask of the resultant fiber tracks was overlaid on high-resolution T1- and T2-weighted anatomical MR images and used for stereotactic surgical navigation. Magnetic source imaging was performed in seven of the patients to identify functional somatosensory cortices. During resection, subcortical stimulation mapping of the motor pathway was performed within the white matter using a bipolar electrode. Results A total of 16 subcortical motor stimulations were stereotactically identified in nine patients. The mean distance between the stimulation sites and the DT-imaged fiber tracks was 8.7 ±3.1 mm (±standard deviation). The measured distance between subcortical stimulation sites and DT-imaged fiber tracks combines tracking technique errors and all errors encountered with stereotactic navigation. Conclusions Fiber tracks delineated using DT imaging can be used to identify the motor tract in deep white matter and define a safety margin around the tract.


Sign in / Sign up

Export Citation Format

Share Document