white matter integrity
Recently Published Documents


TOTAL DOCUMENTS

1153
(FIVE YEARS 309)

H-INDEX

76
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Xiaoying Wang ◽  
Wenhui Guo ◽  
Yingying Zhang ◽  
Dan Liu ◽  
Qing Gao ◽  
...  

Abstract Background: Posture/balance disorder and pain are both present in Parkinson's patients, but their neural basis remain unclear. To investigate the central mechanism of posture/balance disorder and PD-related pain in Parkinson's disease by using diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS), combined with Transcranial Doppler (TCD). Results: It was found that the dose of levodopa, UPDRSⅡ and UPDRSⅢ were higher value in the group with higher score of posture/balance. In the more severe posture/balance disorder group, the fiber bundles of the prefrontal cortex, anterior cingulate cortex and basal ganglia were more likely to be affected. In addition, the DTI parameter values of the three brain regions had a significant correlation with the parameter values of the corresponding arteries. In the analysis of PD-related pain, the white matter fiber bundles from the midbrain to the basal ganglia increased in patients with PD-related pain. There were no statistic difference in prevalence of PD-related pain was found between different groups according to posture/balance. Conclusions: Posture and balance in PD were correlated with the severity of the disease and the dosage of compound levodopa. Posture and balance in PD were related to changes in the white matter integrity of the prefrontal cortex, anterior cingulate cortex and basal ganglia. The function of cerebral arteries had contributions to white matter integrity of these area and posture/balance. PD-related pain was positively correlated with sleep score. Patients with PD-related pain had an increase in the fiber projection from the midbrain to the basal ganglia. No relation was found between posture/balance disorder with PD-related pain.


Author(s):  
Annerine Roos ◽  
Catherine J. Wedderburn ◽  
Jean-Paul Fouche ◽  
Shantanu H Joshi ◽  
Katherine L Narr ◽  
...  

AbstractPrenatal exposure to maternal depression increases the risk for onset of emotional and behavioral disorders in children. We investigated the effects of exposure to prenatal depression on white matter microstructural integrity at birth and at 2-3 years, and associated neurodevelopment. Diffusion-weighted images were acquired for children of the Drakenstein Child Health Study at 2-4 weeks postpartum (n=70, 47% boys) and at 2-3 years of age (n=60, 58% boys). Tract-Based Spatial Statistics was used to compare, using an ROI based approach, diffusion tensor metrics across groups defined by presence (>19 on Beck’s Depression Inventory and/or >12 on the Edinburgh Postnatal Depression Scale) or absence (below depression thresholds) of depression, and associations with neurodevelopmental measures at age 2-3 years were determined. We did not detect group differences in white matter integrity at neonatal age, but at 2-3 years, children in the exposed group demonstrated higher fractional anisotropy, and lower mean and radial diffusivity in association tracts compared to controls. This was notable in the sagittal stratum (radial diffusivity: p<0.01). Altered white matter integrity metrics were also observed in projection tracts, including the corona radiata, which associated with cognitive and motor outcomes in exposed 2-3-year-olds (p<0.05). Our findings of widespread white matter alterations in 2-3-year-old children with prenatal exposure to depression are consistent with previous findings, as well as with neuroimaging findings in adults with major depression. Further, we identified novel associations of altered white matter integrity with cognitive development in depression-exposed children, suggesting that these neuroimaging findings may have early functional impact.


2022 ◽  
pp. 1-10
Author(s):  
Wenjun Su ◽  
Aihua Yuan ◽  
Yingying Tang ◽  
Lihua Xu ◽  
Yanyan Wei ◽  
...  

Abstract Background Schizophrenia is a severely debilitating psychiatric disorder with high heritability and polygenic architecture. A higher polygenic risk score for schizophrenia (SzPRS) has been associated with smaller gray matter volume, lower activation, and decreased functional connectivity (FC). However, the effect of polygenic inheritance on the brain white matter microstructure has only been sparsely reported. Methods Eighty-four patients with first-episode schizophrenia (FES) patients and ninety-three healthy controls (HC) with genetics, diffusion tensor imaging (DTI), and resting-state functional magnetic resonance imaging (rs-fMRI) data were included in our study. We investigated impaired white matter integrity as measured by fractional anisotropy (FA) in the FES group, further examined the effect of SzPRS on white matter FA and FC in the regions connected by SzPRS-related white matter tracts. Results Decreased FA was observed in FES in many commonly identified regions. Among these regions, we observed that in the FES group, but not the HC group, SzPRS was negatively associated with the mean FA in the genu and body of corpus callosum, right anterior corona radiata, and right superior corona radiata. Higher SzPRS was also associated with lower FCs between the left inferior frontal gyrus (IFG)–left inferior temporal gyrus (ITG), right IFG–left ITG, right IFG–left middle frontal gyrus (MFG), and right IFG–right MFG in the FES group. Conclusion Higher polygenic risks are linked with disrupted white matter integrity and FC in patients with schizophrenia. These correlations are strongly driven by the interhemispheric callosal fibers and the connections between frontotemporal regions.


Author(s):  
Yingxi Chen ◽  
Jie Sheng ◽  
Xiuying Tang ◽  
Yuhong Zhao ◽  
Shujuan Zhu ◽  
...  

2021 ◽  
pp. 1-7
Author(s):  
Takeshi Ikegawa ◽  
Shin Ono ◽  
Kouji Yamamoto ◽  
Mikihiro Shimizu ◽  
Sadamitsu Yanagi ◽  
...  

Abstract This study investigated the incidence and risk factors of perioperative clinical seizure and epilepsy in children after operation for CHD. We included 777 consecutive children who underwent operation from January 2013 to December 2016 at Kanagawa Children’s Medical Center, Kanagawa, Japan. Perinatal, perioperative, and follow-up medical data were collected. Elastic net regression and mediation analysis were performed to investigate risk factors of perioperative clinical seizure and epilepsy. Anatomic CHD classification was performed based on the preoperative echocardiograms; cardiac surgery was evaluated using Risk Adjustment in Congenital Heart Surgery 1. Twenty-three (3.0%) and 15 (1.9%) patients experienced perioperative clinical seizure and epilepsy, respectively. Partial regression coefficient with epilepsy as the objective variable for anatomical CHD classification, Risk Adjustment in Congenital Heart Surgery 1, and the number of surgeries was 0.367, 0.014, and 0.142, respectively. The proportion of indirect effects on epilepsy via perioperative clinical seizure was 22.0, 21.0, and 33.0%, respectively. The 15 patients with epilepsy included eight cases with cerebral infarction, two cases with cerebral haemorrhage, and three cases with hypoxic-ischaemic encephalopathy; white matter integrity was not found. Anatomical complexity of CHD, high-risk cardiac surgery, and multiple cardiac surgeries were identified as potential risk factors for developing epilepsy, with a low rate of indirect involvement via perioperative clinical seizure and a high rate of direct involvement independently of perioperative clinical seizure. Unlike white matter integrity, stroke and hypoxic-ischaemic encephalopathy were identified as potential factors for developing epilepsy.


Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 43
Author(s):  
MacGregor Thomas ◽  
Jonathan Savitz ◽  
Ye Zhang ◽  
Kaiping Burrows ◽  
Ryan Smith ◽  
...  

(1) Background: Growing evidence indicates that inflammation can induce neural circuit dysfunction and plays a vital role in the pathogenesis of major depressive disorder (MDD). Nevertheless, whether inflammation affects the integrity of white matter pathways is only beginning to be explored. (2) Methods: We computed quantitative anisotropy (QA) from diffusion magnetic resonance imaging as an index of white matter integrity and regressed QA on C-reactive protein (CRP), controlling for age, sex, and BMI, in 176 participants with MDD. (3) Results: The QA values of several white matter tracts were negatively correlated with CRP concentration (standardized beta coefficient = −0.22, 95%CI = −0.38–−0.06, FDR < 0.05). These tracts included the bilateral cortico-striatal tracts, thalamic radiations, inferior longitudinal fasciculi, corpus callosum (the forceps minor portion and the tapetum portion), cingulum bundles, and the left superior longitudinal fasciculus III. Importantly, the association remained robust after regressing up to twelve potential confounders. The bilateral fornix and a small portion of the thalamic radiation showed a positive association with CRP levels, but these associations did not remain significant after adjusting for confounders. (4) Conclusions: Peripheral inflammation may contribute to the etiology of MDD by impacting the microstructural integrity of brain corticolimbic white matter pathways.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Collin B. Kilgore ◽  
Jeremy F. Strain ◽  
Brittany Nelson ◽  
Sarah A. Cooley ◽  
Alexander Rosenow ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaofen Zong ◽  
Qinran Zhang ◽  
Changchun He ◽  
Xinyue Huang ◽  
Jiangbo Zhang ◽  
...  

Background: Mounting evidence from diffusion tensor imaging (DTI) and epigenetic studies, respectively, confirmed the abnormal alterations of brain white matter integrity and DNA methylation (DNAm) in schizophrenia. However, few studies have been carried out in the same sample to simultaneously explore the WM pathology relating to clinical behaviors, as well as the DNA methylation basis underlying the WM deficits.Methods: We performed DTI scans in 42 treatment-naïve first-episode schizophrenia patients and 38 healthy controls. Voxel-based method of fractional anisotropy (FA) derived from DTI was used to assess WM integrity. Participants' peripheral blood genomic DNAm status, quantified by using Infinium® Human Methylation 450K BeadChip, was examined in parallel with DTI scanning. Participants completed Digit Span test and Trail Making test, as well as Positive and Negative Syndrome Scale measurement. We acquired genes that are differentially expressed in the brain regions with abnormal FA values according to the Allen anatomically comprehensive atlas, obtained DNAm levels of the corresponding genes, and then performed Z-test to compare the differential epigenetic-imaging associations (DEIAs) between the two groups.Results: Significant decreases of FA values in the patient group were in the right middle temporal lobe WM, right cuneus WM, right anterior cingulate WM, and right inferior parietal lobe WM, while the significant increases were in the bilateral middle cingulate WM (Ps &lt; 0.01, GRF correction). Abnormal FA values were correlated with patients' clinical symptoms and cognitive impairments. In the DEIAs, patients showed abnormal couple patterns between altered FA and DNAm components, for which the enriched biological processes and pathways could be largely grouped into three biological procedures: the neurocognition, immune, and nervous system.Conclusion: Schizophrenia may not cause widespread neuropathological changes, but subtle alterations affecting local cingulum WM, which may play a critical role in positive symptoms and cognitive impairments. This imaging-epigenetics study revealed for the first time that DNAm of genes enriched in neuronal, immunologic, and cognitive processes may serve as the basis in the effect of WM deficits on clinical behaviors in schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document