Recent Progress of Interfering Ultra-fast Laser Processing Technique

2015 ◽  
Vol 135 (9) ◽  
pp. 1080-1084
Author(s):  
Yoshiki Nakata ◽  
Yoshiki Matsuba ◽  
Noriaki Miyanaga
2011 ◽  
Vol 4 (3) ◽  
pp. 891-894 ◽  
Author(s):  
Haifeng Yang ◽  
Yanqing Wang ◽  
Liang Fang ◽  
Shirong Ge

2008 ◽  
Vol 137 (1) ◽  
pp. 144-153 ◽  
Author(s):  
Emilia Pecheva ◽  
Todor Petrov ◽  
Cristian Lungu ◽  
Paul Montgomery ◽  
Lilyana Pramatarova

2008 ◽  
Vol 35 (11) ◽  
pp. 1821-1824
Author(s):  
金永龙 Jin Yonglong ◽  
张宇 Zhang Yu ◽  
顾宁 Gu Ning

JOM ◽  
1981 ◽  
Vol 33 (8) ◽  
pp. 19-23 ◽  
Author(s):  
J. D. Ayers ◽  
R. J. Schaefer ◽  
W. P. Robey

2014 ◽  
Vol 298 ◽  
pp. 125-129 ◽  
Author(s):  
C.L. Sones ◽  
I.N. Katis ◽  
B. Mills ◽  
M. Feinaeugle ◽  
A. Mosayyebi ◽  
...  

2008 ◽  
Vol 199 (1-3) ◽  
pp. 221-229 ◽  
Author(s):  
Hongyu Shan ◽  
Hong Zhou ◽  
Na Sun ◽  
Luquan Ren ◽  
Li Chen ◽  
...  

Author(s):  
Linjie Zhao ◽  
Jian Cheng ◽  
Zhaoyang Yin ◽  
Hao Yang ◽  
Qi Liu ◽  
...  

Micro-optics and micro-structures play important roles in the field of optics. A multi-step processing strategy with the combination of various processing technologies has been applied to fabricate micro-optics and micro-structures. However, the multi-step processing method is complex and expensive. In this work, a rapid CO2 laser processing technique is proposed to fabricate micro-optics and micro-structures on fused silica materials. First, high-power and short-pulse CO2 laser is used to achieve rapid prototyping of micro-optics and micro-structures with pre-designed geometry on fused silica. In this step, a maximum material removal rate of 1.53 mm3/min could be achieved with surface roughness better than 100 nm. Then, using the same CO2 laser source with reduced laser power density, the initially processed fused silica surface could be smoothed to improve the surface quality. By simulating the CO2 laser interaction with fused silica material, the formation mechanism of smooth surface is revealed, and the processing parameters for achieving smooth silica surface are proposed. The surface roughness of finally processed silica surface could reach 10.8 nm. Finally, as an application example of the processed two-step CO2 laser processing method, a micro-structure with special hexagonal shape on fused silica optics is successfully processed. The proposed rapid CO2 laser processing technique for the fabrication of micro-optics and micro-structures on fused silica materials can be realized with only one equipment, which can not only ensure the processing accuracy and efficiency but also reduce the processing cost.


Sign in / Sign up

Export Citation Format

Share Document