Rapid CO2 laser processing technique for fabrication of micro-optics and micro-structures on fused silica materials

Author(s):  
Linjie Zhao ◽  
Jian Cheng ◽  
Zhaoyang Yin ◽  
Hao Yang ◽  
Qi Liu ◽  
...  

Micro-optics and micro-structures play important roles in the field of optics. A multi-step processing strategy with the combination of various processing technologies has been applied to fabricate micro-optics and micro-structures. However, the multi-step processing method is complex and expensive. In this work, a rapid CO2 laser processing technique is proposed to fabricate micro-optics and micro-structures on fused silica materials. First, high-power and short-pulse CO2 laser is used to achieve rapid prototyping of micro-optics and micro-structures with pre-designed geometry on fused silica. In this step, a maximum material removal rate of 1.53 mm3/min could be achieved with surface roughness better than 100 nm. Then, using the same CO2 laser source with reduced laser power density, the initially processed fused silica surface could be smoothed to improve the surface quality. By simulating the CO2 laser interaction with fused silica material, the formation mechanism of smooth surface is revealed, and the processing parameters for achieving smooth silica surface are proposed. The surface roughness of finally processed silica surface could reach 10.8 nm. Finally, as an application example of the processed two-step CO2 laser processing method, a micro-structure with special hexagonal shape on fused silica optics is successfully processed. The proposed rapid CO2 laser processing technique for the fabrication of micro-optics and micro-structures on fused silica materials can be realized with only one equipment, which can not only ensure the processing accuracy and efficiency but also reduce the processing cost.

1992 ◽  
Vol 279 ◽  
Author(s):  
Yasutaka Matsumoto ◽  
Yoshihiro Yoshikado ◽  
Masataka Murahara

ABSTRACTFused silica is widely used material in window and lens applications for excimer laser processing. The transmittance of the laser beam in fused silica is attenuated approximately 40% by high fluence ArF excimer laser irradiation. The attenuation of the transmittance corresponds to the growth of an absorption band at 215nm. This phenomenon is troublesome for laser lithography. To investigate this effect, we examined the laser induced luminescence and absorption under various conditions. The 215nm absorption band was diminished by annealing at 900 °C for 2 hours in He ambient. Ke could successfully obtain good optical material, whose transmittance remains constant with increasing ArF laser(193nm) shot exposure.


2015 ◽  
Vol 135 (9) ◽  
pp. 1080-1084
Author(s):  
Yoshiki Nakata ◽  
Yoshiki Matsuba ◽  
Noriaki Miyanaga

Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


Optik ◽  
2021 ◽  
pp. 167259
Author(s):  
Wenfeng Sun ◽  
Xia Xiang ◽  
Bo Li ◽  
Xiang Dong ◽  
Xiaolong Jiang ◽  
...  

1990 ◽  
Vol 12 (1) ◽  
pp. 58-70 ◽  
Author(s):  
Lin Xin Yao ◽  
James A. Zagzebski ◽  
Ernest L. Madsen

In previous work, we demonstrated that accurate backscatter coefficient measurements are obtained with a data reduction method that explicitly accounts for experimental factors involved in recording echo data. An alternative, relative processing method for determining the backscatter coefficient and the attenuation coefficient is presented here. This method involves comparison of echo data from a sample with data recorded from a reference phantom whose backscatter and attenuation coefficients are known. A time domain processing technique is used to extract depth and frequency dependent signal ratios for the sample and the reference phantom. The attenuation coefficient and backscatter coefficient of the sample are found from these ratios. The method is tested using tissue-mimicking phantoms with known scattering and attenuation properties.


2016 ◽  
Vol 25 (10) ◽  
pp. 108104
Author(s):  
Yong Jiang ◽  
Qiang Zhou ◽  
Rong Qiu ◽  
Xiang Gao ◽  
Hui-Li Wang ◽  
...  

Author(s):  
Masayuki Ochiai ◽  
Naoya Kato ◽  
Hiromu Hashimoto

In this research, we aim to examine the usefulness of the newly developed spindle motor proposed by Ochiai. Since machining error due to tool wear etc. used for microfabrication can be ignored, laser processing was used as a processing method. Thrust bearing grooves were generated by laser processing, and variation in groove depth was observed. Finally, the optimum shape of the thrust bearing groove was obtained by robust optimization using the probability distribution that can be approximated from the obtained machining error.


Author(s):  
Hamaid Mahmood KHAN

Selective laser sintering (SLS) is a process of fabrication of three-dimensional structures by fus- ing powder particles using a guided laser source. The uncertainty in the mechanical properties of the SLS parts fabricated at the same time and with the same process parameters can affect the repeatability of the SLS process. A vast difference in the mechanical properties of the concurrently processed parts can lower the production quality of the batch. Therefore, the param- eters are required to be design based on the most probable outcome of the desired properties. Weibull distribution is one such statistical-based probability distribution method to measure the likelihood of the occurrence of a value of any random variable falling within a particular range of values. Here, the Weibull distribution was used to measure the relative likelihood (90% probability) of the surface roughness and the compressive strength values of the SLS-built polyamide PA2200 components in the given sample space that was obtained from 20 random samples. The results show that the variance in the surface roughness (scan and built plane) and the compressive strength values were in the range of 6–7 μm and around 10 MPa, respectively. Moreover, the surface roughness of the two orthogonal planes with 90% reliability was measured at 14.81 μm (scan plane) and 12.15 μm (built plane). Similarly, the yield strength and the compressive strength with 90% reliability were found 25.87 MPa and 62.64 MPa, respectively.


2021 ◽  
Vol 1032 ◽  
pp. 84-90
Author(s):  
Ou Chuan Lin ◽  
Ying Luo Zhou ◽  
Jing Li ◽  
Virgil Bunyan

In this paper, a composite micromachining process is introduced. By adjusting the surface microstructure, a composite coating with two kinds of materials with different characteristics was fabricated. Carbon steel is used as the substrate material, and laser processing is used to obtain the micro morphology on the substrate surface. nanoSiC particles were selected as one of the coating materials, and the SiC coating was added through the process of micropore induced nanoparticles self-assembly. Ni was selected as another coating material and added by electrodeposition. This processing method can be used to prepare multifunctional surface coating, combining the characteristics of different materials. This work can provide an idea to create more excellent multifunctional surfaces.


Sign in / Sign up

Export Citation Format

Share Document