scholarly journals Analytical Calculation of Magnetic Flux Line from Hexahedral Edge Finite Element Analysis and its Allocation using the Bubble System for Visualization

2007 ◽  
Vol 127 (11) ◽  
pp. 1205-1212 ◽  
Author(s):  
Masashi Hirahatake ◽  
So Noguchi ◽  
Hajime Igarashi ◽  
Hideo Yamashita
2015 ◽  
Vol 764-765 ◽  
pp. 289-293
Author(s):  
Yi Chang Wu ◽  
Han Ting Hsu

This paper presents the magnetostatic field analysis of a coaxial magnetic gear device proposed by Atallah and Howe. The structural configuration and speed reduction ratio of this magnetic gear device are introduced. The 2-dimensional finite-element analysis (2-D FEA), conducted by applying commercial FEA software Ansoft/Maxwell, is performed to evaluate the magnetostatic field distribution, especially for the magnetic flux densities within the outer air-gap. Once the number of steel pole-pieces equals the sum of the pole-pair numbers of the high-speed rotor and the low-speed rotor, the coaxial magnetic gear device possesses higher magnetic flux densities, thereby generating greater transmitted torque.


2014 ◽  
Vol 599-601 ◽  
pp. 321-325
Author(s):  
Li Qiang Sun ◽  
Hong Bo Zhu ◽  
Ming Xie ◽  
Ji Xia Li

In view of the petroleum and petrochemical characteristics of horizontal tank, ANSYS software of finite element analysis was carried out on the horizontal tank within the magnetic flux leakage testing, analyzes the influencing factors of defect magnetic flux leakage signals. Experiments verify the finite element analysis results, the experimental results show that the research of horizontal tank within the magnetic flux leakage detection effect is obvious.


Author(s):  
Hubert Lejeune ◽  
Yann Ton That

The european standard EN1591-1 [1], initially published in 2001, defines a calculation method for bolted gasketed circular flanges, alternative to the TAYLOR-FORGE method, used as the basic method in most codes. In 2007, a new part, XP CEN/TS 1591-3 [2], has been added to the EN1591 series. This technical specification enables to take into account the Metal to Metal Contact (MMC), appearing inside the bolt circle on some assemblies. Due to a lack of industrial feedback and detailed validation, this document has not been raised to the standard status. In that context, under the request of its Pressure Vessel and Piping commission, CETIM has performed a study comparing this calculation method to Finite Element Analysis (FEA) on several industrial configurations. After a description of the XP CEN/TS 1591-3 calculation method, the major results obtained for spiral wound gasketed joints where MMC appears between centering ring and flange facing are presented and compared with FEA results. Moreover, results obtained with other classical analytical calculation methods as TAYLOR FORGE and EN1591-1 on the same Bolted Flange Connections (BFC) configuration are also analysed and compared to XP CEN/TS 1591-3 results.


2014 ◽  
Vol 620 ◽  
pp. 127-132
Author(s):  
Xiao Wen Xi ◽  
Shang Kun Ren ◽  
Li Hua Yuan

Using large finite element analysis (FEA) software ANSYS, the stress-magnetization effect on 20# steel specimens with different shape notches is simulated under the geomagnetic field and tensile load. With the stimulation, the magnetic flux leakage fields at certain positions of the surface specimen were measured. Through analysis the relationship between the magnetic flux leakage fields of certain points with tensile stress, the results showed that the magnetic field value at certain positions of specimen surface first decreases and then increases along with the increase of stress, which is called magnetization reversal phenomenon; Different gaps and different positions of the specimen show different magnetization reversal rules; By measuring the maximal variation of the magnetic field value △Hmax at certain positions of the surface specimen and by analyzing its change law, we can roughly estimate specimen stress size and distribution regularity of stress. Moreover, this article also discusses the effect of lifts-off of the probe on the law of stress magnetization.


2013 ◽  
Vol 22 (1) ◽  
pp. 018103 ◽  
Author(s):  
Jian Feng ◽  
Jun-Feng Zhang ◽  
Sen-Xiang Lu ◽  
Hong-Yang Wang ◽  
Rui-Ze Ma

Sign in / Sign up

Export Citation Format

Share Document