flux line
Recently Published Documents


TOTAL DOCUMENTS

566
(FIVE YEARS 10)

H-INDEX

58
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Taylanov Nizom Abdurazzakovich ◽  
Bekmirzaeva Xursand ◽  
Urozov Abduxolik Nurmamatovich ◽  
Igamqulova Zilola

Abstract In the present paper the magnetic flux penetration dynamics of type-II superconductors in the flux creep regime is studied by analytically solving the nonlinear diffusion equation for the magnetic flux induction, assuming that an applied field parallel to the surface of the sample and using a power-law dependence of the differential resistivity on the magnetic field induction. An exact solution of nonlinear diffusion equation for the magnetic induction B(r, t) is obtained by using a well-known self-similar technique. We study the problem in the framework of a macroscopic approach, in which all length scales are larger than the flux-line spacing; thus, the superconductor is considered as a uniform medium.


2021 ◽  
Vol 11 (14) ◽  
pp. 6308
Author(s):  
Wolfgang Treimer ◽  
Tobias Junginger ◽  
Oliver Kugeler

Reducing the size of ambient magnetic flux trapping during cooldown in superconducting radio-frequency niobium cavities is essential to reaching the lowest power dissipation as required for continuous wave application. Here, it is suggested that applying an alternating magnetic field superimposed to the external DC field can potentially reduce the size of trapped flux by supporting flux line movement. This hypothesis is tested for the first time systematically on a buffered chemically polished (BCP) niobium sample before and after high temperature annealing, a procedure which is known to reduce flux pinning. External low-frequency (Hz-range) magnetic fields were applied to the samples during their superconducting transition and the effect of varying their amplitude, frequency and offset was investigated. A few results can be highlighted: The influence of the frequency and magnitude of the AC fields on the flux trapping in the untreated Nb sample cannot be neglected. The trapped flux seems to be homogeneously distributed, unlike the flux trapping in, e.g., lead (Pb), which is a type I superconductor. After annealing, the Nb sample shows practically no dependency of flux trapping on external AC fields. The trapped magnetic flux was measured by polarized neutron imaging, and calculations of trapped fields show good agreement with experimental results.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Muayad Kod ◽  
Jiafeng Zhou ◽  
Yi Huang ◽  
Muaad Hussein ◽  
Abed P. Sohrab ◽  
...  

An approach to improve wireless power transfer (WPT) to implantable medical devices using loop antennas is presented. The antenna exhibits strong magnetic field and dense flux line distribution along two orthogonal axes by insetting the port inside the antenna area. This design shows excellent performance against misalignment in the y-direction and higher WPT as compared with a traditional square loop antenna. Two antennas were optimized based on this approach, one wearable and the other implantable. Both antennas work at both the ISM (Industrial, Scientific, and Medical) band of 433 MHz for WPT and the MedRadio (Medical Device Radiocommunications Service) band of 401–406 MHz for communications. To test the WPT for implantable medical devices, a miniaturized rectifier with a size of 10 mm × 5 mm was designed to integrate with the antenna to form an implantable rectenna. The power delivered to a load of 4.7 kΩ can be up to 1150 μW when 230 mW power is transmitted which is still under the safety limit. This design can be used to directly power a pacemaker, a nerve stimulation device, or a glucose measurement system which requires 70 μW, 100 μW, and 48 μW DC power, respectively.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mathew W. Bub ◽  
Erich Poppitz ◽  
Samuel S.Y. Wong

Abstract We study confining strings in $$ \mathcal{N} $$ N = 1 supersymmetric SU(Nc) Yang-Mills theory in the semiclassical regime on ℝ1,2× 𝕊1. Static quarks are expected to be confined by double strings composed of two domain walls — which are lines in ℝ2 — rather than by a single flux tube. Each domain wall carries part of the quarks’ chromoelectric flux. We numerically study this mechanism and find that double-string confinement holds for strings of all N-alities, except for those between fundamental quarks. We show that, for Nc≥ 5, the two domain walls confining unit N-ality quarks attract and form non-BPS bound states, collapsing to a single flux line. We determine the N-ality dependence of the string tensions for 2 ≤ Nc≤ 10. Compared to known scaling laws, we find a weaker, almost flat N-ality dependence, which is qualitatively explained by the properties of BPS domain walls. We also quantitatively study the behavior of confining strings upon increasing the 𝕊1 size by including the effect of virtual “W-bosons” and show that the qualitative features of double-string confinement persist.


2020 ◽  
Vol 32 (2) ◽  
pp. 025001
Author(s):  
Zhong Qing ◽  
Tsai Yuchien ◽  
Li Jinjin ◽  
Ling Hao ◽  
Jiang Kaili ◽  
...  

Author(s):  
Ying-Qiu Gu

The magnetic field of the earth plays an important role in the ecosystem, and the magnetic field of celestial bodies is also important in the formation of cosmic large-scale structures, but the origin and evolution of the celestial magnetic field is still an unresolved mystery. Many hypotheses to explain the origin have been proposed, but there are some insurmountable difficulties for each one. At present, the theory widely accepted in scientific society is the dynamo model, it says that, the movement of magnetofluid inside celestial bodies, which can overcome the Ohmic dissipative effect and generate persistent weak electric current and macroscopic magnetic field. However, this model needs an initial seed magnetic field, and the true values of many physical parameters inside the celestial body are difficult to obtain, and there is no stable solution to the large range of fluid motion. These are all difficulties for the dynamo model. Furthermore, it is difficult for the dynamo to explain the correlation between the dipole magnetic field and angular momentum of a celestial body. In this paper, by calculating the interaction between spin of particles and gravity of celestial body according to Clifford algebra, we find that a rotational celestial body provides a field $\Omega^\alpha$ for spins, which is similar to the magnetic field of a dipole, and the spins of charged particles within the celestial body are arranged along the flux line of $\Omega^\alpha$, then a macroscopic magnetic field is induced. The calculation shows that the strength of $\Omega^\alpha$ is proportional to the angular momentum of the celestial body, which explains the correlation between the magnetic intensity and angular momentum. The results of this paper suggest that further study of the effects of internal variables such as density, velocity, pressure and temperature of a celestial body on $\Omega^\alpha$ may provide some new insights into the origin and evolution of celestial magnetic field.


2020 ◽  
Vol 101 (2) ◽  
Author(s):  
Harshwardhan Chaturvedi ◽  
Ulrich Dobramysl ◽  
Michel Pleimling ◽  
Uwe C. Täuber

2019 ◽  
Vol 631 ◽  
pp. A133 ◽  
Author(s):  
Arthur D. Bosman ◽  
Andrea Banzatti ◽  
Simon Bruderer ◽  
Alexander G. G. M. Tielens ◽  
Geoffrey A. Blake ◽  
...  

Context. CO rovibrational lines are efficient probes of warm molecular gas and can give unique insights into the inner 10 AU of proto-planetary disks, effectively complementing ALMA observations. Recent studies find a relation between the ratio of lines originating from the second and first vibrationally excited state, denoted as v2∕v1, and the Keplerian velocity or emitting radius of CO. Counterintuitively, in disks around Herbig Ae stars the vibrational excitation is low when CO lines come from close to the star, and high when lines only probe gas at large radii (more than 5 AU). The v2∕v1 ratio is also counterintuitively anti-correlated with the near-infrared (NIR) excess, which probes hot and warm dust in the inner disk. Aims. We aim to find explanations for the observed trends between CO vibrational ratio, emitting radii and NIR excess, and to identify their implications in terms of the physical and chemical structure of inner disks around Herbig stars. Methods. First, slab model explorations in local thermal equilibrium (LTE) and non-LTE are used to identify the essential parameter space regions that can produce the observed CO emission. Second, we explore a grid of thermo-chemical models using the DALI code, varying gas-to-dust ratio and inner disk radius. Line flux, line ratios, and emitting radii are extracted from the simulated lines in the same way as the observations and directly compared to the data. Results. Broad CO lines with low vibrational ratios are best explained by a warm (400–1300 K) inner disk surface with gas-to-dust ratios below 1000 (NCO < 1018 cm−2); no CO is detected within or at the inner dust rim, due to dissociation at high temperatures. In contrast, explaining the narrow lines with high vibrational ratios requires an inner cavity of a least 5 AU in both dust and gas, followed by a cool (100–300 K) molecular gas reservoir with gas-to-dust ratios greater than 10 000 (NCO > 1018 cm−2) at the cavity wall. In all cases, the CO gas must be close to thermalization with the dust (Tgas ~ Tdust). Conclusions. The high gas-to-dust ratios needed to explain high v2∕v1 in narrow CO lines for a subset of group I disks can be naturally interpreted as due to the dust traps that are proposed to explain millimeter dust cavities. The dust trap and the low gas surface density inside the cavity are consistent with the presence of one or more massive planets. The difference between group I disks with low and high NIR excess can be explained by gap opening mechanisms that do or do not create an efficient dust trap, respectively. The broad lines seen in most group II objects indicate a very flat disk in addition to inner disk substructures within 10 AU that can be related to the substructures recently observed with ALMA. We provide simulated ELT-METIS images to directly test these scenarios in the future.


Sign in / Sign up

Export Citation Format

Share Document