scholarly journals AC Loss Due To Longitudinal and Azimuthal Magnetic Field Components of AC Ultra-fine Multifilamentary Superconducting Wire

1997 ◽  
Vol 117 (5) ◽  
pp. 687-699
Author(s):  
Satoshi Fukui ◽  
Osami Tsukamoto ◽  
Naoyuki Amemiya
Author(s):  
Jianfeng Huang ◽  
Y. Ilyin ◽  
W.A.J. Wessel ◽  
Ruben Lubkemann ◽  
Erik Krooshoop ◽  
...  

Abstract The inter-strand contact resistance and AC losses were measured on an ITER PF Coil joint in a parallel applied AC magnetic field. In addition, the hysteresis loss was measured as a function of the angle with the applied magnetic field on a NbTi strand of the same type as in the joint with a Vibrating Sample Magnetometer (VSM). The AC loss measurements were performed at four applied field conditions for combinations of 0 or 1 T offset field and 0.2 or 0.4 T sinusoidal amplitude. The hysteresis loss of the joint was compared with the measured AC loss density of the NbTi strand for the same field conditions as the joint AC loss measurement but with varying the angle of the applied field. The subsequent cable twist angles affect the hysteresis loss since the critical current and penetration field depend on the angle of the applied field. It is found that 15.5° is an effective angle for the calculation of the hysteresis loss of joint when compared to the single strand measurement. The inter-strand contact resistance measurements cover all the typical strand combinations from the five cabling stages of the individual conductors, as well as the strand combinations across the two conductors to characterize the inter-strand including the copper sole resistivity. It’s the first time to measure the contact resistances and AC losses of the full-size ITER PF joint. By comparing the measured and simulated data in the JackPot-ACDC model, it’s also the first time to obtain the accurate inter-strand, inter-petal and strand to copper sole contact resistivities, which are the main input parameters for the further quantitative numerical analysis of the PF joints, in any current and magnetic field conditions.


2002 ◽  
Vol 372-376 ◽  
pp. 1754-1757 ◽  
Author(s):  
J Ogawa ◽  
M Iwamoto ◽  
O Tsukamoto ◽  
M Murakami ◽  
M Tomita

2021 ◽  
Vol 2103 (1) ◽  
pp. 012058
Author(s):  
I Louksha ◽  
P A Trofimov ◽  
B D Usherenko

Abstract The results of modeling a collector with 4-stage recovery of residual electron energy for the SPbPU gyrotron with a frequency of 74.2 GHz and an output power of 100 kW are presented. For spatial separation of electrons with different energies, an azimuthal magnetic field created by a toroidal solenoid is used. An increase of the recovery efficiency and a decrease of the current of electrons reflected from the collector is achieved by reducing the spread of the radial position of the leading centers of electron trajectories at optimal parameters of the toroidal solenoid, as well as by using a sectioned electron beam. The trajectory analysis of the spent electron beam in the collector region showed the possibility of achieving the total efficiency of the gyrotron, close to 80%.


Sign in / Sign up

Export Citation Format

Share Document