ac loss
Recently Published Documents


TOTAL DOCUMENTS

961
(FIVE YEARS 61)

H-INDEX

36
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Peng Gao ◽  
Yuxiang He ◽  
Hongjun Ma ◽  
V.A. Anvar ◽  
Jianfeng Huang ◽  
...  

Abstract Given the low price and relatively high transition temperature (39 K) of MgB2 conductor, MgB2-based superconductors are a potential candidate for the lower field fusion coils, such as Poloidal Field (PF) coils, Correction Coils (CC) and Feeders. However, to date, the application of MgB2 is limited to demonstrators in a low magnetic field of up to 5 T and at temperatures of up to 10 to 20 K, relying on cryogen-free, helium gas or liquid hydrogen cooling, which significantly reduce the cost of cryogenic systems. To demonstrate the feasibility and performance verification of large size MgB2 PF conductors based on ITER and CFETR requirements, a 4th-stage subsize MgB2 Cable-In-Conduit Conductor (CICC) cable sample is made at the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The CICC contains 96 in-situ MgB2 superconducting wires, manufactured by Western Superconducting Technology Ltd. (WST) and 48 copper wires. The critical current of the sub-size cables and MgB2 witness wires are examined with different background magnetic fields at 4.2 K. In addition, the AC loss is measured utilizing magnetization and calorimetric methods. To further clarify the influence of electromagnetic force on the AC loss performance, the cable sample is pressed transversely at room temperature and then inserted into a dipole magnet for AC loss measurement at 4.2 K. The critical current at 4.2 K of the subsize MgB2 CICC cable shows 20% degradation compared to the witness wires at 2 T background magnetic field. However, no further critical current degradation is visible during ramping up and down the magnetic field. The coupling loss time constant for 1 T background magnetic field amounts to 480 ms. No significant effect of the applied transverse stress on the coupling loss is observed between 0 and 10 MPa.



Author(s):  
Yueming Sun ◽  
Jin Fang ◽  
Gennady Sidorov ◽  
Rodney Alan Badcock ◽  
Nicholas J Long ◽  
...  

Abstract In many high-temperature superconducting (HTS) applications, HTS coated conductors carry a DC current under an external AC magnetic field. In such operating conditions, dynamic resistance will occur when the traversing magnetic flux across the HTS conductors. Consequently, AC loss within the superconductors is composed of the dynamic loss component arising from dynamic resistance and the magnetization loss component due to the AC external magnetic field. In this work, the dynamic resistance and the total loss in a three-tape HTS coated conductor stack were measured at 77 K under perpendicular AC magnetic fields up to 80 mT and DC currents (Idc) up to the critical current (Ic). The stack was assembled from three serial-connected 4 mm wide Superpower wires. The measured dynamic resistance results for the stack were well supported by the results from 2D H-formulation finite element modelling (FEM) and broadly agree with the analytical values for stacks. The FEM analysis shows asymmetric transport DC current profiles in the central region of the superconductor. We attribute the result to the superposition of DC currents and the induced subcritical currents which explains why the measured magnetization loss values increase with DC current levels at low magnetic field. The onset of dynamic loss for the stack for low i (Idc/ Ic) values is much slower when compared to that of the single tape and hence the contribution of the dynamic loss component to the total loss in the stack is much smaller than that of the single tape. Dynamic loss in the stack becomes comparable to the magnetization loss at i = 0.5 and becomes greater than the magnetization loss at i = 0.7. Both magnetization loss and dynamic loss in the stack are smaller than those of the single tape due to shielding effects.



Author(s):  
Jianfeng Huang ◽  
Y. Ilyin ◽  
W.A.J. Wessel ◽  
Ruben Lubkemann ◽  
Erik Krooshoop ◽  
...  

Abstract The inter-strand contact resistance and AC losses were measured on an ITER PF Coil joint in a parallel applied AC magnetic field. In addition, the hysteresis loss was measured as a function of the angle with the applied magnetic field on a NbTi strand of the same type as in the joint with a Vibrating Sample Magnetometer (VSM). The AC loss measurements were performed at four applied field conditions for combinations of 0 or 1 T offset field and 0.2 or 0.4 T sinusoidal amplitude. The hysteresis loss of the joint was compared with the measured AC loss density of the NbTi strand for the same field conditions as the joint AC loss measurement but with varying the angle of the applied field. The subsequent cable twist angles affect the hysteresis loss since the critical current and penetration field depend on the angle of the applied field. It is found that 15.5° is an effective angle for the calculation of the hysteresis loss of joint when compared to the single strand measurement. The inter-strand contact resistance measurements cover all the typical strand combinations from the five cabling stages of the individual conductors, as well as the strand combinations across the two conductors to characterize the inter-strand including the copper sole resistivity. It’s the first time to measure the contact resistances and AC losses of the full-size ITER PF joint. By comparing the measured and simulated data in the JackPot-ACDC model, it’s also the first time to obtain the accurate inter-strand, inter-petal and strand to copper sole contact resistivities, which are the main input parameters for the further quantitative numerical analysis of the PF joints, in any current and magnetic field conditions.



2021 ◽  
Author(s):  
Mengxiao Song ◽  
Danfeng Zhou ◽  
Jie Li


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7811
Author(s):  
Yingzhen Liu ◽  
Francesco Grilli ◽  
Jiwei Cao ◽  
Liyi Li ◽  
Chengming Zhang ◽  
...  

A fully superconducting wind generator employs superconductors in stator and rotor to enable high torque density and low weight, that is, enable an ultra-light electric machine for wind application. However, the level of the AC loss of the stator armature coils is a critical issue, which lacks investigations in the design of the fully superconducting generators. In this paper, an in-house model was developed to analyze the potential of a fully superconducting generator by integrating the electromagnetic design with the AC loss estimation. The electromagnetic model was made through analytical equations, which take into consideration the geometry, the magnetic properties of iron, and the nonlinear E–J constitutive law of superconductors. Since the permeability of iron materials and the critical current of the superconductors depend on the magnetic field, an iteration process was proposed to find their operating points for every electromagnetic design. The AC loss estimation was carried out through finite element software based on the T–A formulation of Maxwell’s equations instead of analytical equations, due to the complexity of magnetic fields, currents and rotation. The results demonstrate that the design approach is viable and efficient, and is therefore useful for the preliminary design of the generator. In addition, it is found that smaller tape width, larger distance between the superconducting coils in the same slot, smaller coil number in one slot and lower working temperature can reduce the AC loss of the stator coils, but the reduction of the AC loss needs careful design to achieve an optimum solution.



Author(s):  
Zhuo Chen ◽  
Ye Ma ◽  
Kaihe Zhang ◽  
Chenxi Zhou ◽  
Xiaoyan Huang ◽  
...  

High temperature superconducting (HTS) tapes could be introduced into large scale wind power generators in order to improve the power density. However, the alternating current (AC) loss of HTS tapes will cause the reduction of efficiency. On the basis of analytical and numerical model calculations, this paper presents an optimal design of the HTS armature winding aiming at lower AC loss. The main contribution of this work is that the relationship between the installation parameters and the AC loss of such HTS armature windings has been figured out based on the analysis of the shape feature of the HTS tape and the external magnetic field. When the tape is placed along a particular direction where the perpendicular component of external magnetic field has the lowest amplitude, the AC loss is the smallest. The modified installation location and angle are found based on the proposed generator. These results are verified using finite element method (FEM).









Sign in / Sign up

Export Citation Format

Share Document