scholarly journals Necessary conditions of optimality of quadrature formulas with weight on some classes of differentiable functions

1987 ◽  
pp. 47
Author(s):  
Ye.Ye. Dunaichuk

For the quadrature formula (with positive, continuous weight function) that is defined by the values of the function and its derivatives of up to and including $(r-1)$-th order, we find necessary conditions of optimality on the classes $W^r_p$, $r = 1, 2, \ldots$, $p = 2$, $p = \infty$.


1987 ◽  
pp. 37
Author(s):  
Ye.Ye. Dunaichuk

For the quadrature formula (with non-negative, integrable on $[0,1]$ function) that is defined by the values of the function and its derivatives of up to and including $(r-1)$-th order, we find the form of the best coefficients $A^0_{ki}$ ($k = \overline{1, n}$, $i = \overline{0, r-1}$) for fixed nodes $\gamma_k$ ($k = \overline{1, n}$) and we give the sharp estimate of the remainder of this formula on the classes $W^r_p$, $r = 1, 2, \ldots$, $1 \leqslant p \leqslant \infty$.



Author(s):  
A.V. Sahakyan

Although the concept of a hypersingular integral was introduced by Hadamard at the beginning of the 20th century, it began to be put into practical use only in the second half of the century. The theory of hypersingular integral equations has been widely developed in recent decades and this is due to the fact that they describe the governing equations of many applied problems in various fields: elasticity theory, fracture mechanics, wave diffraction theory, electrodynamics, nuclear physics, geophysics, theory vibrator antennas, aerodynamics, etc. It is analytically possible to calculate the hypersingular integral only for a very narrow class of functions; therefore, approximate methods for calculating such an integral are always in the field of view of researchers and are a rapidly developing area of computational mathematics. There are a very large number of papers devoted to this subject, in which various approaches are proposed both to approximate calculation of the hypersingular integral and to the solution of hypersingular integral equations, mainly taking into account the specifics of the behavior of the densi-ty of the hypersingular integral. In this paper, quadrature formulas are obtained for a hypersingular integral whose density is the product of the Hölder continuous function on the closed interval [–1, 1], and weight function of the Jacobi polynomials . It is assumed that the exponents α and β can be arbitrary complex numbers that satisfy the condition of non-negativity of the real part. The numerical examples show the convergence of the quadrature formula to the true value of the hypersingular integral. The possibility of applying the mechanical quadrature method to the solution of various, including hypersingular, integral equations is indicated.



2020 ◽  
Vol 28 (1) ◽  
pp. 12
Author(s):  
V.P. Motornyi ◽  
D.A. Ovsyannikov

The exact value of error of interval quadrature formulas$$\int_0^{2\pi}f(t)dt -\frac{\pi}{nh}\sum_{k=0}^{n-1}\int_{-h}^hf(t+\frac {2k\pi}{n})dt = R_n(f;\vec{c_0};\vec{x_0};h)$$obtained for the classes $W^rH^{\omega} (r=1,2,...)$ of differentiable periodic functions for which the modulus of continuity of the  $r -$th derivative is majorized by the given modulus of continuity $\omega(t)$. This interval quadrature formula coincides with the rectangles formula for the Steklov functions $f_h(t)$ and is optimal for some important classes of functions.



Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Yan Wang ◽  
Muhammet Cihat Dağli ◽  
Xi-Min Liu ◽  
Feng Qi

In the paper, by virtue of the Faà di Bruno formula, with the aid of some properties of the Bell polynomials of the second kind, and by means of a general formula for derivatives of the ratio between two differentiable functions, the authors establish explicit, determinantal, and recurrent formulas for generalized Eulerian polynomials.



Author(s):  
Muhammad Uzair Awan ◽  
Muhammad Zakria Javed ◽  
Michael Th. Rassias ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

AbstractA new generalized integral identity involving first order differentiable functions is obtained. Using this identity as an auxiliary result, we then obtain some new refinements of Simpson type inequalities using a new class called as strongly (s, m)-convex functions of higher order of $$\sigma >0$$ σ > 0 . We also discuss some interesting applications of the obtained results in the theory of means. In last we present applications of the obtained results in obtaining Simpson-like quadrature formula.



1995 ◽  
Vol 1 (3) ◽  
pp. 179-191 ◽  
Author(s):  
N. U. Ahmed ◽  
X. Xiang

In this paper we consider optimal control problem for infinite dimensional uncertain systems. Necessary conditions of optimality are presented under the assumption that the principal operator is the infinitesimal generator of a strongly continuous semigroup of linear operators in a reflexive Banach space. Further, a computational algorithm suitable for computing the optimal policies is also given.



PAMM ◽  
2008 ◽  
Vol 8 (1) ◽  
pp. 10871-10872
Author(s):  
M. Tsintsadze ◽  
Z. Tsintsadze


2012 ◽  
Vol 20 (1) ◽  
pp. 447-458
Author(s):  
Zlatko Udovičić ◽  
Mirna Udovičić

Abstract We are considering the quadrature formulas of “practical type” (with five knots) for approximate computation of integral [xxx] where w(·) denotes (even) Tchebychev weight function. We prove that algebraic degree of exactness of those formulas can not be greater than five. We also determined some admissible nodes and compared proposed formula with some other quadrature formulas.



Sign in / Sign up

Export Citation Format

Share Document