scholarly journals Antiangiogenic potential of Jatropha curcas latex in the chick chorioallantoic membrane model

2019 ◽  
Vol 29 (1) ◽  
pp. 32157
Author(s):  
Luciane Madureira Almeida ◽  
Elisa Flávia Luiz Cardoso Bailão ◽  
Illana Reis Pereira ◽  
Fabrício Alves Ferreira ◽  
Patrícia Lima D'Abadia ◽  
...  

AIMS: To perform a physicochemical and phytochemical characterization of Jatropha curcas latex and to investigate its antiangiogenic potential. METHODS: We performed an initial physicochemical characterization of J. curcas latex using thermal gravimetric analyses and Fourier Transform Infrared spectroscopy. After that, phenols, tannins and flavonoids were quantified. Finally, the potential of J. curcas latex to inhibit angiogenesis was evaluated using the chick chorioallantoic membrane model. Five groups of 20 fertilized chicken eggs each had the chorioallantoic membrane exposed to the following solutions: (1) water, negative control; (2) dexamethasone, angiogenesis inhibitor; (3) Regederm®, positive control; (4) 25% J. curcas latex diluted in water; (5) 50% J. curcas latex diluted in water; and (6) J. curcas crude latex. Analysis of the newly-formed vascular net was made through captured images and quantification of the number of pixels. Histological analyses were performed to evaluate the inflammation, neovascularization, and hyperemia parameters. The results were statically analyzed with a significance level set at p ˂0.05.RESULTS: Physicochemical characterization showed that J. curcas latex presented a low amount of cis-1.4-polyisoprene, which reduced its elasticity and thermal stability. Phytochemical analyses of J. curcas latex identified a substantial amount of phenols, tannins, and flavonoids (51.9%, 11.8%, and 0.07% respectively). Using a chick chorioallantoic membrane assay, we demonstrated the antiangiogenic potential of J. curcas latex. The latex induced a decrease in the vascularization of the membranes when compared with neutral and positive controls (water and Regederm®). However, when compared with the negative control (dexamethasone), higher J. curcas latex concentrations showed no significant differences.CONCLUSIONS: J. curcas latex showed low thermal stability, and consisted of phenols, tannins, and flavonoids, but little or no rubber. Moreover, this latex demonstrated a significant antiangiogenic activity on a chick chorioallantoic membrane model. The combination of antimutagenic, cytotoxic, antioxidant and antiangiogenic properties makes J. curcas latex a potential target for the development of new drugs.

2002 ◽  
Vol 77 ◽  
pp. S4
Author(s):  
A. Nap ◽  
P.G. Groothuis ◽  
A.Demir Weusten ◽  
A.F.P. de Goeij ◽  
G.A.J. Dunselman ◽  
...  

2017 ◽  
Vol 32 (6) ◽  
pp. 649 ◽  
Author(s):  
XIAO Wen ◽  
LIU Yu-Mei ◽  
REN Kai-Ge ◽  
SHI Feng ◽  
LI Yan ◽  
...  

2021 ◽  
Vol 28 ◽  
Author(s):  
Ana Isabel Fraguas-Sánchez ◽  
Cristina Martín-Sabroso ◽  
Ana Isabel Torres-Suárez

Background: The chick chorioallantoic membrane (CAM) model has attracted a great deal of interest in pharmaceutical and biological research as an alternative or complementary in vivo assay to animal models. Traditionally, CAM assay has been widely used to perform some toxicological studies, specifically to evaluate the skin, ocular and embryo toxicity of new drugs and formulations, and perform angiogenesis studies. Due to the possibility to generate the tumors onto the CAM, this model has also become an excellent strategy to evaluate the metastatic potential of different tumours and test the efficacy of novel anticancer therapies in vivo. Moreover, in the recent years, its use has considerably grown in other research areas, including the evaluation of new anti-infective agents, the development of biodistribution studies and tissue engineering research. Objectives: This manuscript provides a critical overview of the use of CAM model in pharmaceutical and biological research, especially to test the toxicity of new drugs and formulations and the biodistribution and the efficacy of novel anticancer and anti-infective therapies, analyzing its advantages and disadvantages compared to animal models. Conclusion: The chick chorioallantoic membrane model shows great utility in several research areas, such as cancer, toxicology, biodistribution studies and anti-infective therapies. In fact, it has become an intermediate stage between in vitro experiments and animal studies, and, in the case of toxicological studies (skin and ocular toxicity), has even replaced the animal models.


Drug Delivery ◽  
2013 ◽  
Vol 21 (4) ◽  
pp. 307-314 ◽  
Author(s):  
Vinod Kombath Ravindran ◽  
Swathi Repala ◽  
Sandhya Subadhra ◽  
Ashok Kumar Appapurapu

Sign in / Sign up

Export Citation Format

Share Document