invasion potential
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 35)

H-INDEX

27
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6114
Author(s):  
Iryna Horak ◽  
Svitlana Prylutska ◽  
Iryna Krysiuk ◽  
Serhii Luhovskyi ◽  
Oleksii Hrabovsky ◽  
...  

Effective targeting of metastasis is considered the main problem in cancer therapy. The development of herbal alkaloid Berberine (Ber)-based anticancer drugs is limited due to Ber’ low effective concentration, poor membrane permeability, and short plasma half-life. To overcome these limitations, we used Ber noncovalently bound to C60 fullerene (C60). The complexation between C60 and Ber molecules was evidenced with computer simulation. The aim of the present study was to estimate the effect of the free Ber and C60-Ber nanocomplex in a low Ber equivalent concentration on Lewis lung carcinoma cells (LLC) invasion potential, expression of epithelial-to-mesenchymal transition (EMT) markers in vitro, and the ability of cancer cells to form distant lung metastases in vivo in a mice model of LLC. It was shown that in contrast to free Ber its nanocomplex with C60 demonstrated significantly higher efficiency to suppress invasion potential, to downregulate the level of EMT-inducing transcription factors SNAI1, ZEB1, and TWIST1, to unblock expression of epithelial marker E-cadherin, and to repress cancer stem cells-like markers. More importantly, a relatively low dose of C60-Ber nanocomplex was able to suppress lung metastasis in vivo. These findings indicated that сomplexation of natural alkaloid Ber with C60 can be used as an additional therapeutic strategy against aggressive lung cancer.


2021 ◽  
Vol 14 (9) ◽  
pp. 860
Author(s):  
Chien-Wei Huang ◽  
You-Cian Lin ◽  
Chia-Hung Hung ◽  
Han-Min Chen ◽  
Jiun-Tsai Lin ◽  
...  

Tumor metastasis is a major cause of death of patients with colorectal cancer (CRC). Our previous findings show that adenine has antiproliferation activity against tumor cells. However, whether adenine reduces the invasiveness of DLD-1 and SW480 CRC cells has not been thoroughly explored. In this study, we aimed to explore the effects of adenine on the invasion potential of DLD-1 cells. Our findings showed that adenine at concentrations of ≤200 μM did not influence the cell viability of DLD-1 and SW480 CRC cells. By contrast, adenine reduced the migratory potential of the CRC cells. Moreover, it decreased the invasion capacity of the CRC cells in a dose-dependent manner. We further observed that adenine downregulated the protein levels of tissue plasminogen activator, matrix metalloproteinase-9, Snail, TWIST, and vimentin, but upregulated the tissue inhibitor of metalloproteinase-1 expression in DLD-1 cells. Adenine decreased the integrin αV level and reduced the activation of integrin-associated signaling components, including focal adhesion kinase (FAK), paxillin, and Src in DLD-1 cells. Further observations showed that adenine induced AMP-activated protein kinase (AMPK) activation and inhibited mTOR phosphorylation in DLD-1 cells. The knockdown of AMPK restored the reduced integrin αV level and FAK/paxillin/Src signaling inhibited by adenine in DLD-1 cells. Collectively, these findings reveal that adenine reduces the invasion potential of DLD-1 cells through the AMPK/integrin/FAK axis, suggesting that adenine may have anti-metastatic potential in CRC cells.


2021 ◽  
Vol 8 ◽  
Author(s):  
Francisco O. Borges ◽  
Catarina P. Santos ◽  
José R. Paula ◽  
Enrique Mateos-Naranjo ◽  
Susana Redondo-Gomez ◽  
...  

Coastal areas host some of the planet’s most productive ecosystems, providing life-sustaining ecological services and several benefits to humankind, while also being some of the most threatened areas (e.g., by globalization, climate change, and biological invasion). Salt marshes are coastal habitats with a key role in food and shelter provisioning, sediment deposition, nutrient cycling and carbon storage. Spartina spp. is a genus of grass halophytes which occurs in salt marshes worldwide, and includes species with different invasive potential. We evaluated the effect of climate change in the distribution and invasion potential of five Spartina species (S. anglica, S. alterniflora, S. densiflora, S. patens, and S. maritima) at a global scale. Species distribution models (SDMs) were applied on species occurrence data and atmospheric environmental predictors (WorldClim 2.1) to project potential changes in habitat suitability and associated changes in distribution and species co-occurrence until the end of the century, across four Shared Socioeconomic Pathway scenarios (i.e., SSP1-2.6 to SSP5-8.5). Projections showed a global trend for increasing species co-occurrence, with a general range expansion potentiated by increasing pathway severity. This study suggests that Spartina species can potentially benefit from climate change, predicting poleward expansions in the Northern Hemisphere for most species, with results pointing at increased conflict and invasion potential in Northern Europe and East Asian shorelines, already under strong invasive pressure. S. anglica is projected to remain a successful invader, with more severe scenarios likely favoring greater expansions. S. alterniflora exhibits very low expansion comparatively, despite exhibiting the same northward distribution shift. SSP1-2.6 produced the smallest change to species co-occurrence, suggesting a smaller potential for invasion-related conflicts, although still registering a potential net expansion for the Genus. Despite their limitations, SDMs can help establish general trends in climate change ecology and inform policymakers and environmental agents to ensure the correct management of these habitats and, ultimately, ecosystems.


2021 ◽  
Author(s):  
Yu Wang ◽  
Yunxia Zhao ◽  
Xiangwei Zhang ◽  
Yuanzhu Jiang ◽  
Wei Ma ◽  
...  

Abstract Background: We aimed at investigation of the effect and the underlying neurotrophin signaling pathway of the upstream transcription factor 1 (USF1) in lung adenocarcinoma (LUAD).Methods: The Cancer Genome Atlas (TCGA) database was used to analyze USF1 expression data and to extract patients’ clinical records. Immunohistochemical assay and Western blotting (WB) were used to determine the expression levels of USF1 in LUAD. The neurotrophin signaling pathway was analyzed by bioinformatic analysis while the expression of all related proteins was determined by WB. In addition cellular viability, proliferation, migration and invasion potential were investigated by the CCK-8, colony formation, wound healing and transwell. Meanwhile, the effect of USF1 in LUAD progression was investigated in a mouse model. The link between USF1 and UGT1A3 (UDP Glucuronosyltransferase Family 1 Member A3) was studied by the dual-luciferase reporter assay. Results: We have detected a high expression level of USF1 in LUAD, which was associated with advanced tumor stage, nodal metastasis, and poor patient’s survival rate. The knockdown of USF1 inhibited cellular viability, proliferation, migration and invasion. Meanwhile, USF1 knockdown inhibited tumor growth in a mouse model. Besides, USF1 targeted UGT1A3, which was proven by the fact that the USF1 knockdown decreased the expression level of UGT1A3, whereas the upregulated expression of UGT1A3 increased cellular viability and proliferation. We have proved that the neurotrophin signaling pathway in LUAD was activated by USF1 and UGT1A3. The expression of the related proteins was also inhibited by the USF1 knockdown, while the overexpression of IRAK increased cancer cells’ migration and invasion potential.Conclusion: USF1 was highly expressed in LUAD and promoted LUAD progression by regulating the neurotrophin signaling pathway. These findings provide a new theoretical data that could serve as a good foundation for the treatment of LUAD.


2021 ◽  
Author(s):  
Zhong Qin ◽  
Jia-En Zhang ◽  
Benliang Zhao ◽  
Zhaoji Shi ◽  
Zeheng Xiao ◽  
...  

Abstract The most noxious apple snails (Pomacea canaliculata and P. maculata) native to South America, currently has two distinct invaded ranges in China and the United States. Whether the environmental niches of the two closely related species have changed or remained stable (niche conservatism hypothesis) during the invasion process has become an important issue in forecasting their potential geographic distributions. For each Pomacea snail, two ecological niche models (ENMs, employing BIOMOD2) were generated based on bioclimatic variables and occurrence records in: (1) the native range; (2) the different invasive range. Conservation of ecological niche between the native and invasive snail populations were then tested by principal component and niche dynamics analysis. According to all models, precipitation contributed most to distribution of P. maculata, whereas low temperature was another most influential factor for spread of P. canaliculata. Niche conservatism were indicated by niche similarity tests and high niche stability for both Pomacea snails during their invasions in two regions. Niche expansions of P. canaliculata were relatively larger than unfilling values, whereas niche expansions of P. maculata were lower than unfillings. High niche unfilling for P. maculata in the United States revealed a great potential for further expansion in this region. We discuss the possible roles of physiological tolerances, genetic variation, residence time and hybridization in shaping niche changes for Pomacea snails during their invasion processes. Findings of this work can improve the understanding of potential mechanisms for niche differentiation and provide a theoretical basis for forecasting the invasion potential of Pomacea snails.


2021 ◽  
pp. 143-152
Author(s):  
Julieta Salomé Díaz ◽  
Jordan Golubov ◽  
Sarah Sifuentes Torre ◽  
Cristina M. Ramirez‐Gutierrez ◽  
María Carmen Mandujano

Sign in / Sign up

Export Citation Format

Share Document