scholarly journals On the invertibility of solutions of first order linear homogeneous differential equations in Banach algebras

Author(s):  
Oleg E. Galkin ◽  
Svetlana Y. Galkina

This work is devoted to the study of some properties of linear homogeneous differential equations of the first order in Banach algebras. It is found (for some types of Banach algebras), at what right-hand side of such an equation, from the invertibility of the initial condition it follows the invertibility of its solution at any given time. Associative Banach algebras over the field of real or complex numbers are considered. The right parts of the studied equations have the form [F(t)](x(t)), where {F(t)} is a family of bounded operators on the algebra, continuous with respect to t∈R. The problem is to find all continuous families of bounded operators on algebra, preserving the invertibility of elements from it, for a given Banach algebra. In the proposed article, this problem is solved for only three cases. In the first case, the algebra consists of all square matrices of a given order. For this algebra, it is shown that all continuous families of operators, preserving the invertibility of elements from the algebra at zero must be of the form [F(t)](y)=a(t)⋅y+y⋅b(t), where the families {a(t)} and {b(t)} are also continuous. In the second case, the algebra consists of all continuous functions on the segment. For this case, it is shown that all families of operators, preserving the invertibility of elements from the algebra at any time must be of the form [F(t)](y)=a(t)⋅y, where the family {a(t)} is also continuous. The third case concerns those Banach algebras in which all nonzero elements are invertible. For example, the algebra of complex numbers and the algebra of quaternions have this property. In this case, any continuous families of bounded operators preserves the invertibility of the elements from the algebra at any time. The proposed study is in contact with the research of the foundations of quantum mechanics. The dynamics of quantum observables is described by the Heisenberg equation. The obtained results are an indirect argument in favor of the fact, that the known form of the Heisenberg equation is the only correct one.

2003 ◽  
Vol 2003 (26) ◽  
pp. 1645-1661 ◽  
Author(s):  
Hernán R. Henríquez

We establish existence of mild solutions for a class of semilinear first-order abstract retarded functional differential equations (ARFDEs) with infinite delay and we prove that the set consisting of mild solutions for this problem is connected in the space of continuous functions.


Author(s):  
Kamal Jeet ◽  
Dwijendra Pandey

In this paper, we apply the resolvent operator theory and an approximating technique to derive the existence and controllability results for nonlocal impulsive neutral integro-differential equations with finite delay in a Hilbert space. To establish the results, we take the impulsive functions as a continuous function only, and we assume that the nonlocal initial condition is Lipschitz continuous function in the first case and continuous functions only in the second case. The main tools applied in our analysis are semigroup theory, the resolvent operator theory, an approximating technique, and fixed point theorems. Finally, we illustrate the main results with the help of two examples.


2007 ◽  
Vol 38 (1) ◽  
pp. 57-73
Author(s):  
B. C. Dhage

In this paper the existence as well as the existence of the extremal solutions for first order nonlinear perturbed functional random differential equations is proved under mixed Lipschitz, compactness and monotonic conditions.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


2004 ◽  
Vol 40 (5) ◽  
pp. 703-710 ◽  
Author(s):  
D. R. Bojovic ◽  
B. S. Jovanovic ◽  
P. P. Matus

Sign in / Sign up

Export Citation Format

Share Document