scholarly journals Multi-antenna observations in the low-frequency radio astronomy of solar system objects and related topics studies

2015 ◽  
Vol 21 (4(95)) ◽  
pp. 51-55
Author(s):  
A.A. Stanislavsky ◽  
◽  
A.A. Konovalenko ◽  
V.V. Zakharenko ◽  
I.N. Bubnov ◽  
...  

2007 ◽  
Vol 3 (S248) ◽  
pp. 66-73
Author(s):  
J.-E. Arlot

AbstractThe main goal of the astrometry of solar system objects is to build dynamical models of their motions to understand their evolution, to determine physical parameters and to build accurate ephemerides for the preparation and the exploitation of space missions. For many objects, the ground-based observations are still very important because radar or observations from space probes are not available. More, the need of observations on a long period of time makes the ground-based observations necessary. The solar system objects have very different characteristics and the increase of the astrometric accuracy will depend on the objects and on their physical characteristics. The purpose of this communication is to show how to get the best astrometric accuracy.


2011 ◽  
Vol 59 (6) ◽  
pp. 1808-1816 ◽  
Author(s):  
Eloy de Lera Acedo ◽  
Nima Razavi-Ghods ◽  
Luis Enrique Garcia ◽  
Peter Duffett-Smith ◽  
P. Alexander

2021 ◽  
Author(s):  
Dwaipayan Deb ◽  
Pavan Chakraborty

Abstract Surfaces of solid solar system objects are covered by layers of particulate materials called regolith originated from their surface bedrock. They preserve important information about surface geological processes. Often regolith is composed of more than one type of particle in terms of composition, maturity, size, etc. Experiments and theoretical works are being carried out to constrain the result of mixing and extract the abundance of compositional end-members from regolith spectra. In this work we have studied, photometric light scattering from simulated surfaces made of two different materials – one is highly bright quartz particles ≈ 80µm and the other moderately bright sandstone particles ≈ 250µm. The samples were mixed with varying proportions and investigated at normal illumination conditions to avoid the shadowing effect. Said combinations may resemble ice mixed regolith on various solar system objects and therefore important for in situ observations. We find that the combinations show a linear trend in the corresponding reflectance data in terms of their mixing proportion and some interesting facts come out when compared to previous studies.


2021 ◽  
Vol 26 (4) ◽  
pp. 314-325
Author(s):  
S. V. Stepkin ◽  
◽  
O. O. Konovalenko ◽  
Y. V. Vasylkivskyi ◽  
D. V. Mukha ◽  
...  

Purpose: The analytical review of the main results of research in the new direction of the low-frequency radio astronomy, the interstellar medium radio spectroscopy at decameter waves, which had led to astrophysical discovery, recording of the radio recombination lines in absorption for highly excited states of interstellar carbon atoms (more than 600). Design/methodology/approach: The UTR-2 world-largest broadband radio telescope of decameter waves optimally connected with the digital correlation spectrum analyzers has been used. Continuous modernization of antenna system and devices allowed increasing the analysis band from 100 kHzto 24 MHz and a number of channels from 32 to 8192. The radio telescope and receiving equipment with appropriate software allowed to have a long efficient integration time enough for a large line series simultaneously with high resolution, noise immunity and relative sensitivity. Findings: A new type of interstellar spectral lines has been discovered and studied, the interstellar carbon radio recombination lines in absorption for the record high excited atoms with principal quantum numbers greater than 1000. The line parameters (intensity, shape, width, radial velocity) and their relation ship with the interstellar medium physical parameters have been determined. The temperature of line forming regions is about 100 K, the electron concentration up to 0.1 cm–3 and the size of a line forming region is about 10 pc. For the first time, radio recombination lines were observed in absorption. They have significant broadening and are amplified by the dielectronic-like recombination mechanism and are also the lowest frequency lines in atomic spectroscopy. Conclusions: The detected low-frequency carbon radio recombination lines and their observations have become a new highly effective tool for the cold partially ionized interstellar plasma diagnostics. Using them allows obtaining the information which is not available with the other astrophysical methods. For almost half a century of their research, a large amount of hardware-methodical and astrophysical results have been obtained including a record number of Galaxy objects, where there levant lines have been recorded. The domestic achievements have stimulated many theoretical and experimental studies in other countries, but the scientific achievements of Ukrainian scientists prove the best prospects for further development of this very important area of astronomical science. Key words: low-frequency radio astronomy; radio telescope; interstellar medium; radio recombination lines; carbon; hydrogen; spectral analyzer


1998 ◽  
Author(s):  
Alain Lecacheux ◽  
Carlo Rosolen ◽  
V. Clerc ◽  
P. Kleewein ◽  
Helmet O. Rucker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document