Solar system, low frequency radio astronomy from the moon

1994 ◽  
Vol 14 (6) ◽  
pp. 193-200 ◽  
Author(s):  
Alain Lecacheux
Author(s):  
Kristian Zarb Adami ◽  
I. O. Farhat

This work sketches a possible design architecture of a low-frequency radio interferometer located on the lunar surface. The design has evolved from single antenna experiments aimed at the global signal detection of the epoch of reionization (EoR) to the square kilometre array (SKA) which, when complete, will be capable of imaging the highly red-shifted H 1 -signal from the cosmic dawn through to the EoR. However, due to the opacity of the ionosphere below 10 MHz and the anthropogenic radio-frequency interference, these terrestrial facilities are incapable of detecting pre-ionization signals and the moon becomes an attractive location to build a low-frequency radio interferometer capable of detecting such cosmological signals. Even though there are enormous engineering challenges to overcome, having this scientific facility on the lunar surface also opens up several new exciting possibilities for low-frequency radio astronomy. This article is part of a discussion meeting issue ‘Astronomy from the Moon: the next decades’.


2015 ◽  
Vol 21 (4(95)) ◽  
pp. 51-55
Author(s):  
A.A. Stanislavsky ◽  
◽  
A.A. Konovalenko ◽  
V.V. Zakharenko ◽  
I.N. Bubnov ◽  
...  

1998 ◽  
pp. 988-989
Author(s):  
D. L. Jones ◽  
K. W. Weiler

1990 ◽  
Vol 123 ◽  
pp. 508-508
Author(s):  
Kurt W. Weiler ◽  
Namir E. Kassim

AbstractLow frequency radio astronomy for the purpose of this discussion is defined as frequencies ≲100 MHz. Since the technology is fairly simple at these frequencies and even Jansky’s original observations were made at 20.5 MHz, there have been many years of research at these wavelengths. However, though radio astronomers have been working at low frequencies since the first days of science, the observing limitations and the move of much of the effort to ever shorter wavelengths has meant that most areas still remain to be fully exploited with modern techniques and instruments. In particular, the possibilities for pursuing the very lowest frequencies by interferometry of ground to space, in Earth orbit, or from the Moon promises a rebirth of work in this wavelength range.We present concepts for space-ground VLBI and a fully space-based array in high Earth orbit to pursue the astrophysics which can only be probed at these frequencies. An Orbiting Low Frequency Radio Astronomy Satellite (OLFRAS) and a Low Frequency Space Array (LFSA) are two concepts which will open this last, poorly explored area of astronomy at relatively low cost and well within the limits of current technology.


Author(s):  
Armin Wedler ◽  
Martin J. Schuster ◽  
Marcus G. Müller ◽  
Bernhard Vodermayer ◽  
Lukas Meyer ◽  
...  

The Earth's moon is currently an object of interest of many space agencies for unmanned robotic missions within this decade. Besides future prospects for building lunar gateways as support to human space flight, the Moon is an attractive location for scientific purposes. Not only will its study give insight on the foundations of the Solar System but also its location, uncontaminated by the Earth's ionosphere, represents a vantage point for the observation of the Sun and planetary bodies outside the Solar System. Lunar exploration has been traditionally conducted by means of single-agent robotic assets, which is a limiting factor for the return of scientific missions. The German Aerospace Center (DLR) is developing fundamental technologies towards increased autonomy of robotic explorers to fulfil more complex mission tasks through cooperation. This paper presents an overview of past, present and future activities of DLR towards highly autonomous systems for scientific missions targeting the Moon and other planetary bodies. The heritage from the Mobile Asteroid Scout (MASCOT), developed jointly by DLR and CNES and deployed on asteroid Ryugu on 3 October 2018 from JAXA's Hayabusa2 spacecraft, inspired the development of novel core technologies towards higher efficiency in planetary exploration. Together with the lessons learnt from the ROBEX project (2012–2017), where a mobile robot autonomously deployed seismic sensors at a Moon analogue site, this experience is shaping the future steps towards more complex space missions. They include the development of a mobile rover for JAXA's Martian Moons eXploration (MMX) in 2024 as well as demonstrations of novel multi-robot technologies at a Moon analogue site on the volcano Mt Etna in the ARCHES project. Within ARCHES, a demonstration mission is planned from the 14 June to 10 July 2021, 1 during which heterogeneous teams of robots will autonomously conduct geological and mineralogical analysis experiments and deploy an array of low-frequency antennas to measure Jovian and solar bursts. This article is part of a discussion meeting issue ‘Astronomy from the Moon: the next decades'.


2001 ◽  
Vol 196 ◽  
pp. 324-334 ◽  
Author(s):  
V. Altunin

This paper outlines some of the radio frequency interference issues related to radio astronomy performed with space-based radio telescopes. Radio frequency interference that threatens radio astronomy observations from the surface of Earth will also degrade observations with space-based radio telescopes. However, any resulting interference could be different than for ground-based telescopes due to several factors. Space radio astronomy observations significantly enhance studies in different areas of astronomy. Several space radio astronomy experiments for studies in low-frequency radio astronomy, space VLBI, the cosmic microwave background and the submillimetre wavelengths have flown already. The first results from these missions have provided significant breakthroughs in our understanding of the nature of celestial radio radiation. Radio astronomers plan to deploy more radio telescopes in Earth orbit, in the vicinity of the L2 Sun-Earth Lagrangian point, and, in the more distant future, in the shielded zone of the Moon.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


Sign in / Sign up

Export Citation Format

Share Document