Modeling and Analysis of Proppant Transport and Deposition in Hydraulic/Natural Fracture Networks

Author(s):  
Dharmendra Kumar ◽  
Ahmad Ghassemi
Author(s):  
Hannes Hofmann ◽  
Tayfun Babadagli ◽  
Günter Zimmermann

The creation of large complex fracture networks by hydraulic fracturing is imperative for enhanced oil recovery from tight sand or shale reservoirs, tight gas extraction, and Hot-Dry-Rock (HDR) geothermal systems to improve the contact area to the rock matrix. Although conventional fracturing treatments may result in bi-wing fractures, there is evidence by microseismic mapping that fracture networks can develop in many unconventional reservoirs, especially when natural fracture systems are present and the differences between the principle stresses are low. However, not much insight is gained about fracture development as well as fluid and proppant transport in naturally fractured tight formations. In order to clarify the relationship between rock and treatment parameters, and resulting fracture properties, numerical simulations were performed using a commercial Discrete Fracture Network (DFN) simulator. A comprehensive sensitivity analysis is presented to identify typical fracture network patterns resulting from massive water fracturing treatments in different geological conditions. It is shown how the treatment parameters influence the fracture development and what type of fracture patterns may result from different treatment designs. The focus of this study is on complex fracture network development in different natural fracture systems. Additionally, the applicability of the DFN simulator for modeling shale gas stimulation and HDR stimulation is critically discussed. The approach stated above gives an insight into the relationships between rock properties (specifically matrix properties and characteristics of natural fracture systems) and the properties of developed fracture networks. Various simulated scenarios show typical conditions under which different complex fracture patterns can develop and prescribe efficient treatment designs to generate these fracture systems. Hydraulic stimulation is essential for the production of oil, gas, or heat from ultratight formations like shales and basement rocks (mainly granite). If natural fracture systems are present, the fracturing process becomes more complex to simulate. Our simulation results reveal valuable information about main parameters influencing fracture network properties, major factors leading to complex fracture network development, and differences between HDR and shale gas/oil shale stimulations.


2007 ◽  
pp. 437-449 ◽  
Author(s):  
Philippe Davy ◽  
Jean Raynald De Dreuzy ◽  
Tanguy Le Borgne ◽  
Olivier Bour

2017 ◽  
Author(s):  
Budour Ateeq ◽  
Mohamed El Gohary ◽  
Khalid Al Ammari ◽  
Rashad Masoud ◽  
Abdelwahab Noufal ◽  
...  

2001 ◽  
Author(s):  
Chengli Dong ◽  
D. Zhu ◽  
A.D. Hill

2020 ◽  
Author(s):  
Simon Oldfield ◽  
Mikael Lüthje ◽  
Michael Welch ◽  
Florian Smit

<p>Large scale modelling of fractured reservoirs is a persistent problem in representing fluid flow in the subsurface. Considering a geothermal energy prospect beneath the Drenthe Aa area, we demonstrate application of a recently developed approach to efficiently predict fracture network geometry across an area of several square kilometres.</p><p>Using a strain based method to mechanically model fracture nucleation and propagation, we generate a discretely modelled fracture network consisting of individual failure planes, opening parallel and perpendicular to the orientation of maximum and minimum strain. Fracture orientation, length and interactions vary following expected trends, forming a connected fracture network featuring population statistics and size distributions comparable to outcrop examples.</p><p>Modelled fracture networks appear visually similar to natural fracture networks with spatial variation in fracture clustering and the dominance of major and minor fracture trends.</p><p>Using a network topology approach, we demonstrate that the predicted fracture network shares greater geometric similarity with natural networks. Considering fluid flow through the model, we demonstrate that hydraulic conductivity and flow anisotropy are strongly dependent on the geometric connection of fracture sets.</p><p>Modelling fracture evolution mechanically allows improved representation of geometric aspects of fracture networks to which fluid flow is particularly sensitive. This method enables rapid generation of discretely modelled fractures over large areas and extraction of suitable summary statistics for reservoir simulation. Visual similarity of the output models improves our ability to compare between our model and natural analogues to consider model validation.</p>


Sign in / Sign up

Export Citation Format

Share Document