scholarly journals Erratum: Heart rate, heart rate variability, faecal glucocorticoid metabolites and avoidance response of dairy cows before and after changeover to an automatic milking system

2021 ◽  
Vol 68 (4) ◽  
pp. 421
Author(s):  
Viktor Jurkovich ◽  
Fruzsina Luca Kézér ◽  
Ferenc Ruff ◽  
Mikolt Bakony ◽  
Margit Kulcsár ◽  
...  
2017 ◽  
Vol 65 (2) ◽  
pp. 301-313 ◽  
Author(s):  
Viktor Jurkovich ◽  
Fruzsina Luca Kézér ◽  
Ferenc Ruff ◽  
Mikolt Bakony ◽  
Margit Kulcsár ◽  
...  

The heart rate variability (HRV) parameters of dairy cows were monitored during parlour (PARL) and the later installed automatic (AMS) milking on a small-scale commercial dairy farm in Hungary. The aim of the study was to assess stress in relation to the type of milking and the frequency of human interaction. Parlour milking involved regular moving and crowding of the animals with frequent human interaction, which were much less frequent in automatic milking. The first phase of the study was conducted prior to the changeover [n = 27] and the second two months afterwards [n = 19 (of the cows from the first phase)]. Heart rate (HR) was recorded by the Polar RS800 CX recording system. HRV parameters indicative of sympathovagal balance were calculated for periods of lying and standing in the barn, waiting before milking and milking, respectively. Morning and evening faecal glucocorticoid concentrations were also measured. Fear of humans was tested by an avoidance distance test. Baseline HRV parameters showed no difference (P > 0.05) between the two systems. In the periods before, during and after milking a higher sympathetic tone was detected in cows in the PARL phase. Mean faecal glucocorticoid concentrations were higher at the time of parlour milking. The avoidance distance did not differ between the two phases. The results suggest that automatic milking might be less stressful for cows than parlour milking, possibly due to the shorter duration of restraint after milking and the less frequent human interaction.


2013 ◽  
Vol 28 ◽  
pp. 1 ◽  
Author(s):  
T. Diveky ◽  
J. Prasko ◽  
M. Cerna ◽  
D. Kamaradova ◽  
A. Grambal ◽  
...  

2013 ◽  
Vol 32 (3) ◽  
pp. 219-227 ◽  
Author(s):  
Marcus Vinicius Amaral da Silva Souza ◽  
Carla Cristiane Santos Soares ◽  
Juliana Rega de Oliveira ◽  
Cláudia Rosa de Oliveira ◽  
Paloma Hargreaves Fialho ◽  
...  

Author(s):  
Arundhati Goley ◽  
A. Mooventhan ◽  
NK. Manjunath

Abstract Background Hydrotherapeutic applications to the head and spine have shown to improve cardiovascular and autonomic functions. There is lack of study reporting the effect of either neutral spinal bath (NSB) or neutral spinal spray (NSS). Hence, the present study was conducted to evaluate and compare the effects of both NSB and NSS in healthy volunteers. Methods Thirty healthy subjects were recruited and randomized into either neutral spinal bath group (NSBG) or neutral spinal spray group (NSSG). A single session of NSB, NSS was given for 15 min to the NSBG and NSSG, respectively. Assessments were taken before and after the interventions. Results Results of this study showed a significant reduction in low-frequency (LF) to high-frequency (HF) (LF/HF) ratio of heart rate variability (HRV) spectrum in NSBG compared with NSSG (p=0.026). Within-group analysis of both NSBG and NSSG showed a significant increase in the mean of the intervals between adjacent QRS complexes or the instantaneous heart rate (HR) (RRI) (p=0.002; p=0.009, respectively), along with a significant reduction in HR (p=0.002; p=0.004, respectively). But, a significant reduction in systolic blood pressure (SBP) (p=0.037) and pulse pressure (PP) (p=0.017) was observed in NSSG, while a significant reduction in diastolic blood pressure (DBP) (p=0.008), mean arterial blood pressure (MAP) (p=0.008) and LF/HF ratio (p=0.041) was observed in NSBG. Conclusion Results of the study suggest that 15 min of both NSB and NSS might be effective in reducing HR and improving HRV. However, NSS is particularly effective in reducing SBP and PP, while NSB is particularly effective in reducing DBP and MAP along with improving sympathovagal balance in healthy volunteers.


2020 ◽  
Author(s):  
Sandya Subramanian ◽  
Patrick L. Purdon ◽  
Riccardo Barbieri ◽  
Emery N. Brown

ABSTRACTDuring general anesthesia, both behavioral and autonomic changes are caused by the administration of anesthetics such as propofol. Propofol produces unconsciousness by creating highly structured oscillations in brain circuits. The anesthetic also has autonomic effects due to its actions as a vasodilator and myocardial depressant. Understanding how autonomic dynamics change in relation to propofol-induced unconsciousness is an important scientific and clinical question since anesthesiologists often infer changes in level of unconsciousness from changes in autonomic dynamics. Therefore, we present a framework combining physiology-based statistical models that have been developed specifically for heart rate variability and electrodermal activity with a robust statistical tool to compare behavioral and multimodal autonomic changes before, during, and after propofol-induced unconsciousness. We tested this framework on physiological data recorded from nine healthy volunteers during computer-controlled administration of propofol. We studied how autonomic dynamics related to behavioral markers of unconsciousness: 1) overall, 2) during the transitions of loss and recovery of consciousness, and 3) before and after anesthesia as a whole. Our results show a strong relationship between behavioral state of consciousness and autonomic dynamics. All of our prediction models showed areas under the curve greater than 0.75 despite the presence of non-monotonic relationships among the variables during the transition periods. Our analysis highlighted the specific roles played by fast versus slow changes, parasympathetic vs sympathetic activity, heart rate variability vs electrodermal activity, and even pulse rate vs pulse amplitude information within electrodermal activity. Further advancement upon this work can quantify the complex and subject-specific relationship between behavioral changes and autonomic dynamics before, during, and after anesthesia. However, this work demonstrates the potential of a multimodal, physiologically-informed, statistical approach to characterize autonomic dynamics.


2000 ◽  
Vol 88 (3) ◽  
pp. 966-972 ◽  
Author(s):  
N. K. Muenter ◽  
D. E. Watenpaugh ◽  
W. L. Wasmund ◽  
S. L. Wasmund ◽  
S. A. Maxwell ◽  
...  

We hypothesized that sleep restriction (4 consecutive nights, 4 h sleep/night) attenuates orthostatic tolerance. The effect of sleep restriction on cardiovascular responses to simulated orthostasis, arterial baroreflex gain, and heart rate variability was evaluated in 10 healthy volunteers. Arterial baroreflex gain was determined from heart rate responses to nitroprusside-phenylephrine injections, and orthostatic tolerance was tested via lower body negative pressure (LBNP). A Finapres device measured finger arterial pressure. No difference in baroreflex function, heart rate variability, or LBNP tolerance was observed with sleep restriction ( P > 0.3). Systolic pressure was greater at −60 mmHg LBNP after sleep restriction than before sleep restriction (110 ± 6 and 124 ± 3 mmHg before and after sleep restriction, respectively, P = 0.038), whereas heart rate decreased (108 ± 8 and 99 ± 8 beats/min before and after sleep restriction, respectively, P = 0.028). These data demonstrate that sleep restriction produces subtle changes in cardiovascular responses to simulated orthostasis, but these changes do not compromise orthostatic tolerance.


Sign in / Sign up

Export Citation Format

Share Document