scholarly journals Adult plant resistance of selected Kenyan wheat cultivars to leaf rust and stem rust diseases

2017 ◽  
Vol 45 (1) ◽  
pp. 68-82 ◽  
Author(s):  
S. Figlan ◽  
T.A. Baloyi ◽  
T. Hlongoane ◽  
T.G. Terefe ◽  
H. Shimelis ◽  
...  
2010 ◽  
Vol 61 (12) ◽  
pp. 1036 ◽  
Author(s):  
J. Zhang ◽  
C. R. Wellings ◽  
R. A. McIntosh ◽  
R. F. Park

Seedling resistances to stem rust, leaf rust and stripe rust were evaluated in the 37th International Triticale Screening Nursery, distributed by the International Wheat and Maize Improvement Centre (CIMMYT) in 2005. In stem rust tests, 12 and 69 of a total of 81 entries were postulated to carry Sr27 and SrSatu, respectively. When compared with previous studies of CIMMYT triticale nurseries distributed from 1980 to 1986 and 1991 to 1993, the results suggest a lack of expansion in the diversity of stem rust resistance. A total of 62 of 64 entries were resistant to five leaf rust pathotypes. In stripe rust tests, ~93% of the lines were postulated to carry Yr9 alone or in combination with other genes. The absence of Lr26 in these entries indicated that Yr9 and Lr26 are not genetically associated in triticale. A high proportion of nursery entries (63%) were postulated to carry an uncharacterised gene, YrJackie. The 13 lines resistant to stripe rust and the 62 entries resistant to leaf rust represent potentially useful sources of seedling resistance in developing new triticale cultivars. Field rust tests are needed to verify if seedling susceptible entries also carry adult plant resistance.


2007 ◽  
Vol 58 (6) ◽  
pp. 576 ◽  
Author(s):  
H. S. Bariana ◽  
G. N. Brown ◽  
U. K. Bansal ◽  
H. Miah ◽  
G. E. Standen ◽  
...  

Stem rust susceptibility of European wheats under Australian conditions posed a significant threat to wheat production for the early British settlers in Australia. The famous Australian wheat breeder, William Farrer, tackled the problem of stem rust susceptibility through breeding fast-maturing wheat cultivars. South-eastern Australia suffered a severe stem rust epidemic in 1973, which gave rise to a national approach to breeding for rust resistance. The National Wheat Rust Control Program was set up in 1975, modelled on the University of Sydney’s own rust resistance breeding program, at the University of Sydney Plant Breeding Institute, Castle Hill (now Cobbitty). Back-crossing of a range of sources of resistance provided genetically diverse germplasm for evaluation in various breeding programs. Current efforts are directed to building gene combinations through marker-assisted selection. Major genes for resistance to stem rust and leaf rust are being used in the back-crossing program of the ACRCP to create genetic diversity among Australian germplasm. Stripe rust and to a lesser extent leaf rust resistance in the Australian germplasm is largely based on combinations of adult plant resistance genes and our knowledge of their genomic locations has increased. Additional genes, other than Yr18/Lr34 and Yr29/Lr46, appeared to control adult plant resistance to both leaf rust and stripe rust. Two adult-plant stem rust resistance genes have also been identified. The development of selection technologies to achieve genotype-based selection of resistance gene combinations in the absence of bioassays has evolved in the last 5 years. Robust molecular markers are now available for several commercially important rust resistance genes. Marker-assisted selection for rust resistance is performed routinely in many wheat-breeding programs. Modified pedigree and limited back-cross methods have been used for breeding rust-resistant wheat cultivars in the University of Sydney wheat-breeding program. The single back-cross methodology has proved more successful in producing cultivars with combinations of adult plant resistance genes.


Sign in / Sign up

Export Citation Format

Share Document