scholarly journals Description of rail track geometry deterioration process in Hungarian rail lines No. 1 and No. 140

2017 ◽  
Vol 12 (3) ◽  
pp. 141-156 ◽  
Author(s):  
Richárd Nagy
Author(s):  
Ákos Vinkó ◽  
Péter Bocz

The increasing demands for guided transportation modes in urban areas generate the need of high-frequency services. Due to the frequent services, the track deterioration process will be accelerated. Therefore, the exact knowledge of track quality is highly important for every railway company to provide high quality service level.For monitoring of tramway tracks, an unconventional vehicle dynamics measurement setup is developed, which records the data of 3-axes wireless accelerometers mounted on wheel discs of regular in-service tram. In the implementation of prototype system, the bogie side-frame and car body mounted sensors are also fitted to the instrumented vehicle to compare the efficiency of these conventional solutions with the developed arrangement. At the first test period, the instrumented vehicle works as a dedicated inspection vehicle, in order to keep the constant velocity and help to determine the influencing factors on results. Accelerations are processed to obtain the track irregularities, in order to determine whether the track needs to be repaired. Real data come from measurements taken on tram line 49 of the Budapest (Hungary) and they have been validated by comparing results to the actual state of the track provided by a track geometry monitoring trolley and visual inspection. This paper presents the developed methods used for validation and the analysis of preliminary results of the wheel discs mounted accelerometers. This vehicle dynamic measurement system is cheap to implement and no significant modification of the vehicle is required. Therefore, in-service vehicles equipped with this system may serve a good opportunity for monitoring tramway track, while it multiple passes over same track section.


Author(s):  
V. V. Shcherbakov ◽  
M. A. Altyntsev ◽  
M. A. Altyntseva

Abstract. Rail track geometry measuring trolleys are widely used in the railway industry. They can collect information about the state of rails with high accuracy. Nowadays there are a lot of trolleys. Principles of measurements in different trolleys may vary greatly. The trolleys that can use the absolute method of measuring coordinates have advantages. Coordinates of rails and rail track axis can be used as control points for georeferencing of any other surveying data. UAV images are one of these data types. In railways aerial survey using UAVs is mostly used for mapping, gathering data for creation of profiles and some other measurements. UAVs allow reducing the volume of field surveying works. The cost of UAVs is very different. Application of low-cost UAVs imposes increased requirements to distribution of control points. As distribution of control points taken from a trolley trajectory is poor, the issue of such control point application emerges. The study of opportunity to use the trolley trajectory for georeferencing of UAV images is carried out. Accuracy estimation of generating photogrammetric models and image-based point clouds using control point coordinates measured with the trolley is given. Accuracy of measuring obstruction clearances with the help of image-based point clouds is estimated.


2019 ◽  
Vol 4 (1) ◽  
pp. 8 ◽  
Author(s):  
José Neves ◽  
Zita Sampaio ◽  
Manuel Vilela

Building Information Modeling (BIM) is an Industry 4.0 methodology that is increasingly used in the domain of Architecture, Engineering, and Construction (AEC). BIM emerges as a new methodology, one that is more collaborative and based on parametric three-Dimensional (3D) models, centralizing different types of information of a geometric, physical, and economic nature. The purpose of this paper is to analyze the application of the BIM methodology to a rail track rehabilitation case study using a geotextile and geogrid in the ballast layer base. The creation of the 3D and 4D BIM models was performed using various BIM-based tools, which made it possible to achieve the spatial and parametric representation of the rail track and the simulation of the main construction tasks. A new BIM object pertaining to the rail track was created. This paper describes the procedures applied in achieving the BIM models, the limitations involved, and the interoperability between the BIM tools. Additionally, the potential for information extraction with respect to the infrastructure design, construction, and operation, e.g., planning and scheduling, quantities, graphic outputs, and track geometry quality, was demonstrated. It was concluded that the BIM methodology was viable and could be implemented with benefits, despite certain difficulties and limitations, which emphasize the need for further developments.


Author(s):  
Ahmed Lasisi ◽  
Nii Attoh-Okine

Track Geometry parameters from rail track inspection are regulated within unique safety limits for different track classes. This paper focuses on developing an index that combines safety and track quality because of the inefficiency of having corrective maintenance activities between routine maintenance cycles when federal geometry limits are violated. This combination is achievable by summarizing multivariate track geometry parameters, as an improvement to previous linear approaches to address the problem of inefficient track geometry maintenance programs. The use of nonlinear dimension reduction (T-Stochastic Neighbor Embedding-T-SNE) for Hybrid Track Quality Index development, and the influence of time-based parameters on track quality is evaluated in this study. Results show that probability of geometry defects are correlated with principal components but T-SNE had the best prediction on train-test splits despite its poor performance on a blind validation set. The absence of observable correlation between track geometry and acceleration data calls for further investigation.


Author(s):  
A. Soni ◽  
S Robson ◽  
B Gleeson

This paper presents the capabilities of detecting relevant geometry of railway track for monitoring purposes from static terrestrial laser scanning (TLS) systems at platform level. The quality of the scans from a phased based scanner (Scanner A) and a hybrid timeof- flight scanner (Scanner B) are compared by fitting different sections of the track profile to its matching standardised rail model. The various sections of track investigated are able to fit to the model with an RMS of less than 3 mm. Both scanners show that once obvious noise and artefacts have been removed from the data, the most confident fit of the point cloud to the model is the section closest to the scanner position. The results of the fit highlight the potential to use this method as a bespoke track monitoring tool during major redevelopment projects where traditional methods, such as robotic total stations, results in missed information, for example due to passing trains or knocked prisms and must account for offset target locations to compute track parameters.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yaqin Yang ◽  
Peng Xu ◽  
Guotao Yang ◽  
Long Chen ◽  
Junbo Li

The records of maintenance activities are required for modeling the track irregularity deterioration process. However, it is hard to guarantee the completeness and accuracy of the maintenance records. To tackle this problem, an adaptive piecewise modeling framework for the rail track deterioration process driven by historical measurement data from the comprehensive inspection train (referred to as CIT) is proposed. The identification of when maintenance activities occurred is reformulated as a model selection optimization problem based on Bayesian Information Criterion. An efficient solution algorithm utilizing adaptive thresholding and dynamic programming is proposed for solving this optimization problem. This framework’s validity and practicability are illustrated by the measurement data from the CIT inspection of the mileage section of K21 + 184 to K220 + 308 on the Nanchang-Fuzhou railway track from 2014 to 2019. The results indicate that this framework can overcome the disturbance of contaminated measurement data and accurately estimate when maintenance activities were undertaken without any historical maintenance records. What is more, the adaptive piecewise fitting model provided by this framework can describe the irregular deterioration process of corresponding rail track sections.


Proceedings ◽  
2018 ◽  
Vol 2 (16) ◽  
pp. 1141
Author(s):  
Mohd Haniff Bin Osman ◽  
Sakdirat Kaewunruen

On-demand (or unplanned) track inspection could be due to a disruption in a track geometry recording car [1–5]. [...]


Sign in / Sign up

Export Citation Format

Share Document