scholarly journals Buckling analysis of rectangular plates with centered cut-out subjected to in-plane two directions under different boundary conditions

2019 ◽  
Vol 14 (2) ◽  
pp. 169-180
Author(s):  
Ahmed El Bouhmidi ◽  
Mohamed Rougui ◽  
Ouadia Mouhat
2006 ◽  
Vol 306-308 ◽  
pp. 55-60
Author(s):  
I.S. Putra ◽  
T. Dirgantara ◽  
Firmansyah ◽  
M. Mora

In this paper, buckling analysis of cylindrical shells with a circumferential crack is presented. The analyses were performed both numerically using FEM and experimentally. The numerical analyses and experiments were conducted for several crack lengths and radius of curvature, and two different boundary conditions were applied, i.e. simply support and clamp in all sides. The results show the effect of the presence of crack to the critical buckling load of the shells. There are good agreements between experimental and numerical results.


2014 ◽  
Vol 14 (07) ◽  
pp. 1450020 ◽  
Author(s):  
Atteshamuddin S. Sayyad ◽  
Yuwaraj M. Ghugal

This paper presents the uniaxial and biaxial buckling analysis of rectangular plates based on new trigonometric shear and normal deformation theory. The theory accounts for the cosine distribution of the transverse shear strain through the plate thickness and on the free boundary conditions on the plate surfaces without using the shear correction factor. Governing equations and boundary conditions of the theory are derived by the principle of virtual work. The Navier type solutions for the buckling analysis of simply supported isotropic, transversely isotropic, orthotropic and symmetric cross-ply laminated composite rectangular plates subjected to uniaxial and biaxial compressions are presented. The effects of variations in the degree of orthotropy of the individual layers, side-to-thickness ratio and aspect ratio of the plate are examined on the buckling characteristics of composite plates. The present results are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT) and exact three-dimensional (3D) elasticity theory wherever applicable. Good agreement is achieved of the present results with those of higher order shear deformation theory (HSDT) and elasticity theory.


Author(s):  
A Hasani Baferani ◽  
A R Saidi ◽  
E Jomehzadeh

The aim of this article is to find an exact analytical solution for free vibration characteristics of thin functionally graded rectangular plates with different boundary conditions. The governing equations of motion are obtained based on the classical plate theory. Using an analytical method, three partial differential equations of motion are reformulated into two new decoupled equations. Based on the Navier solution, a closed-form solution is presented for natural frequencies of functionally graded simply supported rectangular plates. Then, considering Levy-type solution, natural frequencies of functionally graded plates are presented for various boundary conditions. Three mode shapes of a functionally graded rectangular plate are also presented for different boundary conditions. In addition, the effects of aspect ratio, thickness—length ratio, power law index, and boundary conditions on the vibration characteristics of functionally graded rectangular plates are discussed in details. Finally, it has been shown that the effects of in-plane displacements on natural frequencies of functionally graded plates under different boundary conditions have been studied.


Sign in / Sign up

Export Citation Format

Share Document