EFFECT OF TiO2 + Nb2O5 + TiH2 CATALYSTS ON HYDROGEN STORAGE PROPERTIES OF MAGNESIUM HYDRIDE

MRS Advances ◽  
2020 ◽  
Vol 5 (20) ◽  
pp. 1059-1069
Author(s):  
Ntumba Lobo ◽  
Alicja Klimkowicz ◽  
Akito Takasaki

AbstractMagnesium hydride (MgH2) is a prospective material for the storage of hydrogen in solid materials. It can also be envisaged for thermal energy storage applications since it has the potential to reversibly absorb hydrogen in large quantities, theoretically up to 7.6% by weight. Also, MgH2 is inexpensive, abundant, and environmentally friendly, but it operates at relatively high temperatures, and the kinetics of the hydrogenation process is slow. Mechanical milling and the addition of catalyst can alter the activation energy and the kinetic properties of the MgH2 phase. It is known that the addition of titanium hydride (TiH2) lowers the enthalpy and enhances the absorption of hydrogen from MgH2, titanium oxide (TiO2) enhances the desorption of hydrogen and niobium oxide (Nb2O5) enhances the absorption of hydrogen. In this work, the influences of the catalysts, as mentioned above on the properties of MgH2, were studied. The samples were analyzed in terms of crystal and microstructure as well as hydrogen storage properties using a pressure-composition isotherm (PCT)measurement. It has been found that the simultaneous addition of the three catalysts enhances the properties of MgH2, lowers the activation energy and operating temperature, increases the rate of intake and release of hydrogen, and provides the largest gravimetric hydrogen storage capacity.

Inorganics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 36
Author(s):  
Chengshang Zhou ◽  
Jingxi Zhang ◽  
Robert C. Bowman ◽  
Zhigang Zak Fang

Magnesium-based hydrides are considered as promising candidates for solid-state hydrogen storage and thermal energy storage, due to their high hydrogen capacity, reversibility, and elemental abundance of Mg. To improve the sluggish kinetics of MgH2, catalytic doping using Ti-based catalysts is regarded as an effective approach to enhance Mg-based materials. In the past decades, Ti-based additives, as one of the important groups of catalysts, have received intensive endeavors towards the understanding of the fundamental principle of catalysis for the Mg-H2 reaction. In this review, we start with the introduction of fundamental features of magnesium hydride and then summarize the recent advances of Ti-based additive doped MgH2 materials. The roles of Ti-based catalysts in various categories of elemental metals, hydrides, oxides, halides, and intermetallic compounds were overviewed. Particularly, the kinetic mechanisms are discussed in detail. Moreover, the remaining challenges and future perspectives of Mg-based hydrides are discussed.


2013 ◽  
Vol 117 (25) ◽  
pp. 12973-12980 ◽  
Author(s):  
Chengshang Zhou ◽  
Zhigang Zak Fang ◽  
Chai Ren ◽  
Jingzhu Li ◽  
Jun Lu

RSC Advances ◽  
2015 ◽  
Vol 5 (75) ◽  
pp. 60983-60989 ◽  
Author(s):  
N. Juahir ◽  
N. S. Mustafa ◽  
A. M. Sinin ◽  
M. Ismail

The result showed that the addition of 10 wt% Co2NiO to the MgH2 exhibits a lower onset desorption temperature. The dehydrogenation and rehydrogenation kinetics of MgH2 + 10 wt% Co2NiO were also improved compared to un-doped MgH2.


RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 36852-36859 ◽  
Author(s):  
Liuting Zhang ◽  
Jiaguang Zheng ◽  
Xuezhang Xiao ◽  
Xiulin Fan ◽  
Xu Huang ◽  
...  

The dehydrogenation temperature and kinetics of LiBH4 could be significantly modified by altering the χp of Li ions.


2017 ◽  
Vol 19 (12) ◽  
pp. 8457-8464 ◽  
Author(s):  
Hujun Cao ◽  
Han Wang ◽  
Claudio Pistidda ◽  
Chiara Milanese ◽  
Weijin Zhang ◽  
...  

Sr(OH)2 influences both the thermodynamics and kinetics of the Mg(NH2)2–2LiH system, lowering the dehydrogenation onset and peak temperatures by ca. 70 °C and 13 °C.


2016 ◽  
Vol 45 (16) ◽  
pp. 7085-7093 ◽  
Author(s):  
N. N. Sulaiman ◽  
N. S. Mustafa ◽  
M. Ismail

The MgH2 + 10 wt% Na3FeF6 composite resulted in both a reduced dehydrogenation temperature and enhanced sorption kinetics compared to the undoped MgH2 sample. The activation energy for the decomposition of the as-milled MgH2 was 167.0 kJ mol−1 and this value decreased to 75.0 kJ mol−1 after the addition of 10 wt% Na3FeF6 (a reduction by about 92.0 kJ mol−1).


Sign in / Sign up

Export Citation Format

Share Document