The Interaction of Point Defects with the Martensitic Transformation: A Prototype of Exotic Multiscale Phenomena

MRS Bulletin ◽  
2002 ◽  
Vol 27 (2) ◽  
pp. 116-120 ◽  
Author(s):  
Xiaobing Ren ◽  
Kazuhiro Otsuka

AbstractThe martensitic transformation has so far been studied without considering its interaction with point defects. In this article, we shall show that such interaction, which stems from a universal symmetry property of point defects, can create a rich spectrum of exotic multiscale phenomena in martensitic materials. These phenomena include unique short-range diffusion at the atomic or nano level, remarkable domain-pattern memory at the mesoscopic level, and peculiar rubber-like behavior and aging-induced two-way shape memory at the macroscopic level. Exotic multiscale phenomena may also be found in a wide range of transforming materials, such as ferroelastic, ferroelectric, and ferromagnetic materials. These novel effects may provide new opportunities for these important materials.

2019 ◽  
Vol 161 ◽  
pp. 78-83 ◽  
Author(s):  
Tejas Umale ◽  
Daniel Salas ◽  
Bradley Tomes ◽  
Raymundo Arroyave ◽  
Ibrahim Karaman

Aerospace ◽  
2006 ◽  
Author(s):  
Erik James ◽  
Jamil Grant ◽  
Michael Alberter ◽  
Nastassja Dasque ◽  
Cynthia Price ◽  
...  

Shape memory alloys (SMA) have been an extensively used material for actuators in micro-electromechanical systems (MEMS) because actuation force and displacement are greatest in SMA amongst many actuator materials [1]. Of the alloys currently available for SMA actuators, the most popular system is Nitinol (or NiTi) due to its good oxidation resistance, reversible martensitic transformation, broad range of transformation temperatures (from -100 - 100 °C), and specific power density [2]. Current commercially available SMA wire has easily achieved no-load strain of 5% with medium gage SMA wires demonstrating an axial force capacity of 2 Newtons or more. While the potential use of SMA materials in a thermal-electric motor has been documented beginning in the 1980's, there are a number of new allows and fatigue-resistant materials that may lead to more general designs with a wide range of motions and applications. Shape memory alloys are a special type of material that exhibit two unique properties, pseudo-elasticity and shape memory effect (SME). SMA undergoes SME because of martensitic or diffusionless transformation where each atom has a slight displacement, creating observable changes throughout the structure as the allow changes states. This alloy has the ability, once heated, to return to its parent austenite phase where it exists at higher symmetry. Upon cooling, the material returns to one of many lower symmetry martensitic phases. This thermal cycle is shown in Figure 1. [3,4]. It is even possible for many variants of martensite to be present in the same material. Pseudo-elasticity is a rubber-like flexibility that allows the SMA to be contorted for a variety of purposes. Once contorted, the application of heat will cause the alloy to undergo martensitic transformation. Upon completion of the cycle, the alloy will have returned to its original shape. The development of SMA-based electromechanical devices delivers traditional mechanical motion with non-traditional methods. Rather than electromagnetic components rotating about a central axis to produce power, the rotary SMA motor utilizes contracting elements, and mush as spark ignition rotary engine, it can be designed to produce angular motion. Motion is accomplished with sequenced electrical signals sent across each element mounted between an eccentric crank. Rotary motion is produced during the power portion of the cycle for specific SMA elements under the application of an electrical signal. Based on this concept, our team developed a demonstration model with four active elements. We have demonstrated rotary motion of the device for an extended period of time, and we believe that macro-scale models can reduce the concept substantially and perhaps to the MEMS level.


2013 ◽  
Vol 750-752 ◽  
pp. 730-733
Author(s):  
Jing Bai ◽  
Jiang Long Gu ◽  
Yan Bo Li ◽  
Xiang Zhao ◽  
Liang Zuo ◽  
...  

Ni-Mn-In is a new type of magnetic shape memory alloy, but in the stoichiometric Ni2MnIn, the martensitic transformation cannot perform. Thus, in order to obtain the appropriate Curie temperature TCand the martensitic transformation temperature TM, the composition adjustment must be carried out around the stoichiometric Ni2MnIn. The process of composition adjustment would induce various point defects. This paper scientifically studies the magnetic properties of off-stoichiometric Ni2MnIn alloys by first-principles calculations.


1991 ◽  
Vol 246 ◽  
Author(s):  
Warren J. Moberly ◽  
T.W. Duerig ◽  
J.L. Proft ◽  
R. Sinclair

AbstractThird element additions to TiNi provide a wide range of modifications of its shape memory properties. The advantages of Cu additions are to provide a more narrow hysteresis, less sensitivity to the Ti::Ni(+Cu) ratio of the temperature at which martensite starts to form (Ms), a larger strength differential between the austenite and martensite phases, and superior fatigue resistance. The substitution of a few atomic percent Cu for Ni does not significantly alter the crystal structure of either the cubic B2 austenite nor the monoclinic B19ʹ martensite phases; however, the addition of greater than 10% Cu results in an orthorhombic B19 martensite phase. For the case of 10% Cu, a two-step martensitic transformation occurs upon cooling, with the cubic austenite transforming to the orthorhombic B19 martensite and subsequently to the monoclinic B19ʹ martensite. As a result of this two-step crystallographic transformation, material properties such as resistivity and shape change also exhibit a two-step transformation.In situ transmission electron microscopy heating and cooling experiments are used to observe the two-step martensitic transformation and to establish an orientation relationship between the B19 orthorhombic and the B19ʹ monoclinic structures. Strain vs temperature Ms tests establish the relative shape changes associated with both the cubic-to-orthorhombic transformation and the orthorhombic-to-monoclinic transformation. Similar Ms tests, where an applied load is removed during the transformation, establishes a crystallographic dependence between the two shape changes. Whereas binary TiNi is "trained" to undergo a specific shape change, this ternary TiNiCu alloy has a "natural" direction associated with the second step of its shape change.


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-973-C8-978
Author(s):  
M. Jurado ◽  
Ll. Mañosa ◽  
A. González-Comas ◽  
C. Stassis ◽  
A. Planes

2017 ◽  
Vol 39 (1) ◽  
pp. 7-13
Author(s):  
Ye.P. Mamunya ◽  
◽  
O.K. Matkovska ◽  
O.V. Zinchenko ◽  
E.V. Lebedev ◽  
...  

Author(s):  
A. Bauer ◽  
M. Vollmer ◽  
T. Niendorf

AbstractIn situ tensile tests employing digital image correlation were conducted to study the martensitic transformation of oligocrystalline Fe–Mn–Al–Ni shape memory alloys in depth. The influence of different grain orientations, i.e., near-〈001〉 and near-〈101〉, as well as the influence of different grain boundary misorientations are in focus of the present work. The results reveal that the reversibility of the martensite strongly depends on the type of martensitic evolving, i.e., twinned or detwinned. Furthermore, it is shown that grain boundaries lead to stress concentrations and, thus, to formation of unfavored martensite variants. Moreover, some martensite plates seem to penetrate the grain boundaries resulting in a high degree of irreversibility in this area. However, after a stable microstructural configuration is established in direct vicinity of the grain boundary, the transformation begins inside the neighboring grains eventually leading to a sequential transformation of all grains involved.


Sign in / Sign up

Export Citation Format

Share Document