Macroporous Carbon Monoliths with Large Surface Area for Electric Double-Layer Capacitor

2011 ◽  
Vol 1304 ◽  
Author(s):  
George Hasegawa ◽  
Mami Aoki ◽  
Kazuyoshi Kanamori ◽  
Kazuki Nakanishi ◽  
Teiichi Hanada ◽  
...  

ABSTRACTMacro/meso/microporous carbon monoliths doped with sulfur have been prepared from sulfonated polydivinylbenzene networks followed by the activation with CO2 resulted in the activated carbon monoliths with high surface area of 2400 m2 g−1. The monolithic electrode of the activated carbon shows remarkably high specific capacitance (175 F g−1 at 5 mV s−1 and 206 F g−1 at 0.5 A g−1).

2012 ◽  
Vol 463-464 ◽  
pp. 410-414 ◽  
Author(s):  
Jing Li ◽  
Xiao Dong Zhao

A low-cost organic compound mainly comprising of polyarylate was selected as precursor and a chemical activation method was used to prepare an activated carbon material of large surface area, with which the activated carbon electrodes of high specific capacitance were fabricated for supercapacitor. Impact of activating temperature on the specific capacitance of activated carbon electrode was studied, the relationship between the pore structure, surface area and specific capacitance of activated carbon electrode were discussed. The specific capacitance and ESR (equivalent series resistance ) of the electrode fabricated with the activated carbon prepared at 700°C is 211F.g-1 and 0.2Ω/cm2 in hydrous electrolyte and the 122F/g and 1Ω/cm2 in orgnic electrolyte respectively. Because of the different ion diameter in orgnic and hydrous electrolyte, activated electrode show different electrochemical behavior in cyclic voltammetry examinations.


NANO ◽  
2020 ◽  
Vol 15 (08) ◽  
pp. 2050106
Author(s):  
Rong-Rong Han ◽  
Hao-Yan Zhu ◽  
Min-Peng Li ◽  
Wen-Tong Yang ◽  
Chun Lu ◽  
...  

Biomass-based activated porous carbon (PC) with large porosity and high surface area has been considered as potential electrode material for supercapacitors. The spongy-like porous-activated carbon (SPAC) was prepared from millfeed by one-step carbonization/activation with KOH treatment. It shows three-dimensional (3D) spongy-like structure and high specific surface area (1535[Formula: see text]m2[Formula: see text]g[Formula: see text]). The SPAC electrode exhibits a high specific capacitance (237.9[Formula: see text]F[Formula: see text]g[Formula: see text] at a current density of 0.5[Formula: see text]A[Formula: see text]g[Formula: see text]) and a superior cycle stability (the capacitance retention of 95% after 10[Formula: see text]000 cycles at 2[Formula: see text]A[Formula: see text]g[Formula: see text]) in 2[Formula: see text]M KOH electrolyte, while the SPAC reveals a high specific capacitance of 157[Formula: see text]F[Formula: see text]g[Formula: see text] at 0.5[Formula: see text]A[Formula: see text]g[Formula: see text], good electrochemical stability with 93% capacitance retention after 5000 cycles in ionic liquids. Furthermore, the specific capacitance of SPAC//SPAC supercapacitor reaches 82.1[Formula: see text]F[Formula: see text]g[Formula: see text] at a current density of 0.5[Formula: see text]A[Formula: see text]g[Formula: see text] and achieves a high capacitance retention of 75% when the charging current increases to 10[Formula: see text]A[Formula: see text]g[Formula: see text] in 2[Formula: see text]M KOH electrolyte. The SPAC//SPAC supercapacitor possesses a high specific capacitance of 29.6[Formula: see text]F[Formula: see text]g[Formula: see text] at 0.5[Formula: see text]A[Formula: see text]g[Formula: see text] and a preeminent energy density of 27.8[Formula: see text]Wh[Formula: see text]kg[Formula: see text] (at a power density of 640[Formula: see text]W[Formula: see text]kg[Formula: see text]) in ionic liquids. This paper provides a convenient approach to synthesize low-cost biomass-based carbon material for supercapacitor applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (40) ◽  
pp. 31375-31383 ◽  
Author(s):  
Yuan Gao ◽  
Qinyan Yue ◽  
Baoyu Gao

Mechanism diagram for the synthesis of activated carbons from crab shell wastes.


Sign in / Sign up

Export Citation Format

Share Document