activated carbon fiber
Recently Published Documents


TOTAL DOCUMENTS

787
(FIVE YEARS 144)

H-INDEX

65
(FIVE YEARS 8)

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1515
Author(s):  
Wei Song ◽  
Ran Zhao ◽  
Lin Yu ◽  
Xiaowei Xie ◽  
Ming Sun ◽  
...  

Herein, direct production of hydrogen peroxide (H2O2) through hydroxylamine (NH2OH) oxidation by molecular oxygen was greatly enhanced over modified activated carbon fiber (ACF) catalysts. We revealed that the higher content of pyrrolic/pyridone nitrogen (N5) and carboxyl-anhydride oxygen could effectively promote the higher selectivity and yield of H2O2. By changing the volume ratio of the concentrated H2SO4 and HNO3, the content of N5 and surface oxygen containing groups on ACF were selectively tuned. The ACF catalyst with the highest N5 content and abundant carboxyl-anhydride oxygen containing groups was demonstrated to have the highest activity toward catalytic H2O2 production, enabling the selectivity of H2O2 over 99.3% and the concentration of H2O2 reaching 123 mmol/L. The crucial effects of nitrogen species were expounded by the correlation of the selectivity of H2O2 with the content of N5 from X-ray photoelectron spectroscopy (XPS). The possible reaction pathway over ACF catalysts promoted by N5 was also shown.


2021 ◽  
Vol 22 (22) ◽  
pp. 12247
Author(s):  
Florian Olivier ◽  
Sylvie Bonnamy ◽  
Nathalie Rochet ◽  
Christophe Drouet

A biomaterial that is both bioactive and capable of controlled drug release is highly attractive for bone regeneration. In previous works, we demonstrated the possibility of combining activated carbon fiber cloth (ACC) and biomimetic apatite (such as calcium-deficient hydroxyapatite (CDA)) to develop an efficient material for bone regeneration. The aim to use the adsorption properties of an activated carbon/biomimetic apatite composite to synthetize a biomaterial to be used as a controlled drug release system after implantation. The adsorption and desorption of tetracycline and aspirin were first investigated in the ACC and CDA components and then on ACC/CDA composite. The results showed that drug adsorption and release are dependent on the adsorbent material and the drug polarity/hydrophilicity, leading to two distinct modes of drug adsorption and release. Consequently, a double adsorption approach was successfully performed, leading to a multifunctional and innovative ACC-aspirin/CDA-tetracycline implantable biomaterial. In a second step, in vitro tests emphasized a better affinity of the drug (tetracycline or aspirin)-loaded ACC/CDA materials towards human primary osteoblast viability and proliferation. Then, in vivo experiments on a large cortical bone defect in rats was carried out to test biocompatibility and bone regeneration ability. Data clearly highlighted a significant acceleration of bone reconstruction in the presence of the ACC/CDA patch. The ability of the aspirin-loaded ACC/CDA material to release the drug in situ for improving bone healing was also underlined, as a proof of concept. This work highlights the possibility of bone patches with controlled (multi)drug release features being used for bone tissue repair.


Sign in / Sign up

Export Citation Format

Share Document