macroporous carbon
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 43)

H-INDEX

43
(FIVE YEARS 6)

2022 ◽  
Vol 606 ◽  
pp. 1239-1248
Author(s):  
Yanan Jia ◽  
Ningzhao Shang ◽  
Xiaobo He ◽  
Anaclet Nsabimana ◽  
Yongjun Gao ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Junwei Li ◽  
Xiang Hu ◽  
Guobao Zhong ◽  
Yangjie Liu ◽  
Yaxin Ji ◽  
...  

AbstractPotassium-ion hybrid capacitors (PIHCs) tactfully combining capacitor-type cathode with battery-type anode have recently attracted increasing attentions due to their advantages of decent energy density, high power density, and low cost; the mismatches of capacity and kinetics between capacitor-type cathode and battery-type anode in PIHCs yet hinder their overall performance output. Herein, based on prediction of density functional theory calculations, we find Se/N co-doped porous carbon is a promising candidate for K+ storage and thus develop a simple and universal self-sacrifice template method to fabricate Se and N co-doped three-dimensional (3D) macroporous carbon (Se/N-3DMpC), which features favorable properties of connective hierarchical pores, expanded interlayer structure, and rich activity site for boosting pseudocapacitive activity and kinetics toward K+ storage anode and enhancing capacitance performance for the reversible anion adsorption/desorption cathode. As expected, the as-assembled PIHCs full cell with a working voltage as high as 4.0 V delivers a high energy density of 186 Wh kg−1 and a power output of 8100 W kg−1 as well as excellent long service life. The proof-of-concept PIHCs with excellent performance open a new avenue for the development and application of high-performance hybrid capacitors.


Sign in / Sign up

Export Citation Format

Share Document