Modeling Silicon-Based Periodic Waveguides for Optical Interconnects

2012 ◽  
Vol 1438 ◽  
Author(s):  
Meng-Mu Shih

ABSTRACTTo assist the precision and stability of wavelength at 1550 nm and 1300 nm in planar optical waveguides, hybrid semiconductor-metal corrugated gratings with nanometer period are integrated into silicon-based optical interconnects. This work utilizes multi-parametric optical waveguide models to compute the mode-coupling coefficients in the silicon photonic devices. For such a semiconductor-metal hybrid structure, a proper photonic technique needs to be utilized to solve this computational complexity. The optical method and the photonic method are used to compute coupling coefficients. Both methods have close numerical values shown in figures. Numerical results demonstrate how the normalized corrugation amplitudes of metal gratings can affect the coupling coefficients. Further physical interpretation and discussion can support and explain the above results. The modeling results can help engineers decide the values of parameters used in the design and fabrication of optical waveguides.

2012 ◽  
Vol 1396 ◽  
Author(s):  
Meng-Mu Shih

ABSTRACTTo have better light-emitting performance, semiconductor-metal periodic photonic waveguides can generate stable wavelengths. This work constructs a multi-parameter model to compute the backward-wave mode-coupling coefficients, which are important to the analysis and performance of photonic devices. For such a semiconductor-metal hybrid structure, a proper photonic technique needs to be utilized to solve this computational complexity.Numerical results demonstrate how the materials of metal gratings, the corrugation amplitudes of metal gratings, and the metallic aluminum mole fraction can affect the coupling coefficients. Further physical interpretation and discussion can support and explain the above results. The results can help engineers decide the values of parameters used in fabrication. Future work and applications will be proposed.


Laser Physics ◽  
2021 ◽  
Vol 31 (12) ◽  
pp. 126207
Author(s):  
Fangjie Wang ◽  
Xiaoxu Chen ◽  
Sikun Zhou ◽  
Qiongqiong Gu ◽  
Hao Zhou ◽  
...  

Abstract Silicon photonic devices have great potential for photocommunication, and silicon-based photodetectors have attracted wide attention. Here, we report an on-chip integrated microfiber–silicon–graphene hybrid structure photodetector that can operate in the visible and near-infrared ranges. The detector has a responsivity of ∼136 mA W−1 at 808 nm and a rise time of ∼1.1 μs. At a reverse bias of 5 V, we achieved a responsivity of ∼1350 mA W−1. Our device provides an option for on-chip integration.


Nanophotonics ◽  
2014 ◽  
Vol 3 (4-5) ◽  
pp. 329-341 ◽  
Author(s):  
Raji Shankar ◽  
Marko Lončar

AbstractThe mid-infrared (IR) wavelength region (2–20 µm) is of great interest for a number of applications, including trace gas sensing, thermal imaging, and free-space communications. Recently, there has been significant progress in developing a mid-IR photonics platform in Si, which is highly transparent in the mid-IR, due to the ease of fabrication and CMOS compatibility provided by the Si platform. Here, we discuss our group’s recent contributions to the field of silicon-based mid-IR photonics, including photonic crystal cavities in a Si membrane platform and grating-coupled high-quality factor ring resonators in a silicon-on-sapphire (SOS) platform. Since experimental characterization of microphotonic devices is especially challenging at the mid-IR, we also review our mid-IR characterization techniques in some detail. Additionally, pre- and post-processing techniques for improving device performance, such as resist reflow, Piranha clean/HF dip cycling, and annealing are discussed.


2011 ◽  
Vol 403-408 ◽  
pp. 4295-4299
Author(s):  
H. Hazura ◽  
A.R. Hanim ◽  
B. Mardiana ◽  
Sahbudin Shaari ◽  
P.S. Menon

We present a detailed fabrication process of silicon optical waveguide with a depth of 4μm via simulation and experiment. An anisotropic wet etching using Potassium Hydroxide (KOH) solutions was selected to study the influence of major fabrication parameters such as etch rate, oxidation time and development time to the fabrication performance. The fabrication of the silicon waveguide with the orientation of was modeled using ATHENA from 2D Silvaco software and was later compared with the actual fabricated device. Etching time of 4 minutes was required to etch the Si to the depth of 4μm to obtain a perfectly trapeizoidal optical waveguide structure. Our results show that the simulation model is trustworthy to predict the performance of the practical anisotropic wet etching fabrication process. The silicon-based waveguide components are targeted to be employed in realizing future photonic devices such as optical modulators.


2015 ◽  
Author(s):  
Gyungock Kim ◽  
In Gyoo Kim ◽  
Sanghoon Kim ◽  
Jiho Joo ◽  
Ki-Seok Jang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document