Radiocarbon measurements in cemented ion-exchange resins

2012 ◽  
Vol 1475 ◽  
Author(s):  
Stasys Motiejunas ◽  
Algirdas Vaidotas ◽  
Jonas Mazeika ◽  
Zana Skuratovic ◽  
Violeta Vaitkeviciene

ABSTRACTA large amount of liquid radioactive waste has been generated at the Ignalina Nuclear Power Plant (NPP), Lithuania, during its operation. The contaminated liquids are treated with ion exchange-resins, which will generate significant waste stream for cementation. The cemented waste will be disposed of in a near-surface repository. The preliminary safety assessment uncovered that 14C is the most significant radionuclide affecting long-term safety of the closed repository. The method of combined acid striping and wet oxidation with subsequent catalytic combustion has been applied for 14C measurements in cemented ion-exchange resins. It allows separating organic and inorganic compounds from the same sample. At first, the inorganic fraction was extracted by adding acid to the sample followed by absorption of CO2 in a pair of alkali gas washed traps. The remaining carbon was extracted by application of a strong oxidizer. The preliminary results show that activity concentration of 14C in the solidified waste has an order of magnitude of tens and hundreds Bq per gram.

1992 ◽  
Vol 294 ◽  
Author(s):  
Ari Ipatti

ABSTRACTPretreated inactive ion exchange resins from the Loviisa nuclear power plant (NPP) were first reduced to one tenth of the original volume through microbiological treatment. During the process, the granular ion exchange resins were decomposed to result in dregs, which were solidified with two types of Portland cements. The objective of the present experiments was to investigate whether commercial cements are suitable solidification agents for this kind of waste.A total of ten mixtures were pretested for their rheological and setting properties. On the basis of the pretest results, four additional mixtures were chosen and tested for the spread value, density, air content, setting time and bleeding of the fresh waste product and for the dimensional stability and compressive strength of the hardened waste product. The cementing systems incorporated in the tests were ASTM type V Portland cement and ASTM type P Portland Composite cements. The dregs used in the tests were taken from a Pilot-Plant experiment at the Loviisa NPP and contained 2 wt-% solids.The test results were promising in showing that microbiological dregs can very easily be solidified with Portland cements to form a high-quality waste product. Thus, the microbiological treatment of spent ion exchange resins will drastically decrease the amount of solidified waste to be disposed of at the Loviisa NPP.


2019 ◽  
Vol 23 (4) ◽  
pp. 20-24
Author(s):  
M.S. Palamarchuk ◽  
E.A. Tokar ◽  
M.V. Tutov ◽  
A.M. Yegorin

Simulation of iron oxide (magnetite and maghemite) and aluminosilicate (sillimanite and cyanite) deposits formed on the surface of spent ionexchange resins in the process of decontamination of liquid radioactive waste contaminated by cesium and cobalt radionuclides has been performed. A method of deep deactivation of spent ion-exchange resins contaminated by aluminosilicate and iron oxide deposits using alkaline and acidic solutions containing Zn-EDTA complexes has been suggested. The method of two-stage concentrating of cesium radionuclides using selective sorption materials (resorcinol-formaldehyde resin and Thermoxid-35 ferrocyanide sorbent) has been improved. The method advantage consists in using a solution containing EDTA complexes for elution of cesium radionuclides from the resorcinol-formaldehyde resin with their transition onto Thermoxid-35. High stability of the resorcinol-formaldehyde resin and Thermoxid-35 in the course of concentrating has been demonstrated. A scheme of deactivation of spent ion-exchange resins, which enables one to decrease the volume of secondary wastes due to utilization of a circulating water supply, has been suggested.


Atomic Energy ◽  
2012 ◽  
Vol 111 (4) ◽  
pp. 276-281
Author(s):  
D. N. Babkin ◽  
N. A. Prokhorov ◽  
V. T. Sorokin ◽  
A. V. Demin ◽  
V. V. Iroshnikov

2017 ◽  
Vol 6 (3) ◽  
pp. 42-47
Author(s):  
А. Строкин ◽  
A. Strokin ◽  
А. Валов ◽  
A. Valov

This work is devoted to development of domestic technology for ion exchange resins treatment (conditioning) in the nuclear industry. In the work has been carried out the analysis of a number of domestic technologies applied to treatment of liquid radioactive waste for the purpose of their knots use for developed technological chain’s cost reduction. The analysis of perspective foreign technologies which are already used for ion exchange resins conditioning has been carried out as well. According to analysis report has been proposed the domestic technology for ion exchange resins conditioning with application of polymeric binding. The resulting experimental conditioned matrix obtained with this technology meets the modern requirements imposed to the final product of treatment, is convenient during the transporting and storage, at the same time it is close to foreign samples on key parameters.


2018 ◽  
Vol 29 (4) ◽  
pp. 188-194
Author(s):  
Takeshi IZUMI ◽  
Makoto KOMATSU ◽  
Tatsuya DEGUCHI

Sign in / Sign up

Export Citation Format

Share Document